91 research outputs found

    Negative group delay for Dirac particles traveling through a potential well

    Full text link
    The properties of group delay for Dirac particles traveling through a potential well are investigated. A necessary condition is put forward for the group delay to be negative. It is shown that this negative group delay is closely related to its anomalous dependence on the width of the potential well. In order to demonstrate the validity of stationary-phase approach, numerical simulations are made for Gaussian-shaped temporal wave packets. A restriction to the potential-well's width is obtained that is necessary for the wave packet to remain distortionless in the travelling. Numerical comparison shows that the relativistic group delay is larger than its corresponding non-relativistic one.Comment: 10 pages, 5 figure

    Entanglement of photons

    Full text link
    It is argued that the title of this paper represents a misconception. Contrary to widespread beliefs it is electromagnetic field modes that are ``systems'' and can be entangled, not photons. The amount of entanglement in a given state is shown to depend on redefinitions of the modes; we calculate the minimum and maximum over all such redefinitions for several examples.Comment: 5 pages ReVTe

    Resonant laser tunnelling

    Full text link
    We propose an experiment involving a gaussian laser tunneling through a twin barrier dielectric structure. Of particular interest are the conditions upon the incident angle for resonance to occur. We provide some numerical calculations for a particular choice of laser wave length and dielectric refractive index which confirm our expectations.Comment: 15 pages, 6 figure

    Calculation of atomic spontaneous emission rate in 1D finite photonic crystal with defects

    Full text link
    We derive the expression for spontaneous emission rate in finite one-dimensional photonic crystal with arbitrary defects using the effective resonator model to describe electromagnetic field distributions in the structure. We obtain explicit formulas for contributions of different types of modes, i.e. radiation, substrate and guided modes. Formal calculations are illustrated with a few numerical examples, which demonstrate that the application of effective resonator model simplifies interpretation of results.Comment: Cent. Eur. J. Phys, in pres

    Interaction of the quantized electromagnetic field with atoms in the presence of dispersing and absorbing dielectric bodies

    Get PDF
    A general theory of the interaction of the quantized electromagnetic field with atoms in the presence of dispersing and absorbing dielectric bodies of given Kramers--Kronig consistent permittivities is developed. It is based on a source-quantity representation of the electromagnetic field, in which the electromagnetic-field operators are expressed in terms of a continuous set of fundamental bosonic fields via the Green tensor of the classical problem. Introducing scalar and vector potentials, the formalism is extended in order to include in the theory the interaction of the quantized electromagnetic field with additional atoms. Both the minimal-coupling scheme and the multipolar-coupling scheme are considered. The theory replaces the standard concept of mode decomposition which fails for complex permittivities. It enables us to treat the effects of dispersion and absorption in a consistent way and to give a unified approach to the atom-field interaction, without any restriction to a particular interaction regime in a particular frequency range. All relevant information about the dielectric bodies such as form and intrinsic dispersion and absorption is contained in the Green tensor. The application of the theory to the spontaneous decay of an excited atom in the presence of dispersing and absorbing bodies is addressed.Comment: Paper presented at the International Conference on Quantum Optics and VIII Seminar on Quantum Optics, Raubichi, Belarus, May 28-31, 2000, 14 pages, LaTeX2e, no figure

    Tunneling Violates Special Relativity

    Full text link
    Experiments with evanescent modes and tunneling particles have shown that i) their signal velocity may be faster than light, ii) they are described by virtual particles, iii) they are nonlocal and act at a distance, iv) experimental tunneling data of phonons, photons, and electrons display a universal scattering time at the tunneling barrier front, and v) the properties of evanescent, i.e. tunneling modes is not compatible with the special theory of relativity

    Multiple determination of the optical constants of thin-film coating materials

    Get PDF
    The seven participating laboratories received films of two different thicknesses of Sc2O3 and Rh. All samples of each material were prepared in a single deposition run. Brief descriptions are given of the various methods used for determination of the optical constants of these coating materials. The measurement data are presented, and the results are compared. The mean of the variances of the Sc2O3refractive-index determinations in the 0.40–0.75-nm spectral region was 0.03. The corresponding variances for the refractive index and absorption coefficient of Rh were 0.35 and 0.26, respectively

    Three-dimensional quantization of the electromagnetic field in dispersive and absorbing inhomogeneous dielectrics

    Full text link
    A quantization scheme for the phenomenological Maxwell theory of the full electromagnetic field in an inhomogeneous three-dimensional, dispersive and absorbing dielectric medium is developed. The classical Maxwell equations with spatially varying and Kramers-Kronig consistent permittivity are regarded as operator-valued field equations, introducing additional current- and charge-density operator fields in order to take into account the noise associated with the dissipation in the medium. It is shown that the equal-time commutation relations between the fundamental electromagnetic fields E^\hat E and B^\hat B and the potentials A^\hat A and ϕ^\hat \phi in the Coulomb gauge can be expressed in terms of the Green tensor of the classical problem. From the Green tensors for bulk material and an inhomogeneous medium consisting of two bulk dielectrics with a common planar interface it is explicitly proven that the well-known equal-time commutation relations of QED are preserved

    Stone Soup: No Longer Just an Appetiser

    Get PDF
    This paper announces version 1.0 of Stone Soup: the open-source tracking and state estimation framework. We highlight key elements of the framework and outline example applications and community activities.Stone Soup is engineered with modularity and encapsulation at its heart. This means that its many components can be put together in any number of ways to build, compare, and assure almost any type of multi-target tracking and fusion algorithm. Since its inception in 2017, it has aimed to provide the target tracking and state estimation community with an open, easy-to-deploy framework to develop and assess the performance of different types of trackers. Now, through repeated application in many use cases, implementation of a wide variety of algorithms, multiple beta releases, and contributions from the community, the framework has reached a stable point.In announcing this release, we hope to encourage additional adoption and further contributions to the toolkit. We also acknowledge and express appreciation for the many contributions of time and expertise donated by the tracking and fusion community

    The International Cannabis Toolkit (iCannToolkit) : A multidisciplinary expert consensus on minimum standards for measuring cannabis use

    Get PDF
    Background The lack of an agreed international minimum approach to measuring cannabis use hinders the integration of multidisciplinary evidence on the psychosocial, neurocognitive, clinical and public health consequences of cannabis use. Methods A group of 25 international expert cannabis researchers convened to discuss a multidisciplinary framework for minimum standards to measure cannabis use globally in diverse settings. Results The expert-based consensus agreed upon a three-layered hierarchical framework. Each layer—universal measures, detailed self-report and biological measures—reflected different research priorities and minimum standards, costs and ease of implementation. Additional work is needed to develop valid and precise assessments. Conclusions Consistent use of the proposed framework across research, public health, clinical practice and medical settings would facilitate harmonisation of international evidence on cannabis consumption, related harms and approaches to their mitigation
    • 

    corecore