97 research outputs found

    Bifunctional Paramagnetic and Luminescent Clays Obtained by Incorporation of Gd3+and Eu3+Ions in the Saponite Framework

    Get PDF
    A novel bifunctional saponite clay incorporating gadolinium (Gd3+) and europium (Eu3+) in the inorganic framework was prepared by one-pot hydrothermal synthesis. The material exhibited interesting luminescent and paramagnetic features derived from the co-presence of the lanthanide ions in equivalent structural positions. Relaxometry and photoluminescence spectroscopy shed light on the chemical environment surrounding the metal sites, the emission properties of Eu3+, and the dynamics of interactions between Gd3+ and the inner-sphere water placed in the saponite gallery. The optical and paramagnetic properties of this solid make it an attractive nanoplatform for bimodal diagnostic applications

    Cationic double K-hole pre-edge states of CS2 and SF6

    Get PDF
    Recent advances in X-ray instrumentation have made it possible to measure the spectra of an essentially unexplored class of electronic states associated with double inner-shell vacancies. Using the technique of single electron spectroscopy, spectra of states in CS2 and SF6 with a double hole in the K-shell and one electron exited to a normally unoccupied orbital have been obtained. The spectra are interpreted with the aid of a high-level theoretical model giving excellent agreement with the experiment. The results shed new light on the important distinction between direct and conjugate shake-up in a molecular context. In particular, systematic similarities and differences between pre-edge states near single core holes investigated in X-ray absorption spectra and the corresponding states near double core holes studied here are brought out

    Aneurysm permeability following coil embolization: packing density and coil distribution

    Get PDF
    BACKGROUND: Rates of durable aneurysm occlusion following coil embolization vary widely, and a better understanding of coil mass mechanics is desired. The goal of this study is to evaluate the impact of packing density and coil uniformity on aneurysm permeability. METHODS: Aneurysm models were coiled using either Guglielmi detachable coils or Target coils. The permeability was assessed by taking the ratio of microspheres passing through the coil mass to those in the working fluid. Aneurysms containing coil masses were sectioned for image analysis to determine surface area fraction and coil uniformity. RESULTS: All aneurysms were coiled to a packing density of at least 27%. Packing density, surface area fraction of the dome and neck, and uniformity of the dome were significantly correlated (p \u3c 0.05). Hence, multivariate principal components-based partial least squares regression models were used to predict permeability. Similar loading vectors were obtained for packing and uniformity measures. Coil mass permeability was modeled better with the inclusion of packing and uniformity measures of the dome (r(2)=0.73) than with packing density alone (r(2)=0.45). The analysis indicates the importance of including a uniformity measure for coil distribution in the dome along with packing measures. CONCLUSIONS: A densely packed aneurysm with a high degree of coil mass uniformity will reduce permeability

    Double-core-hole states in CH3CN: Pre-edge structures and chemical-shift contributions

    Get PDF
    Spectra reflecting the formation of single-site double-core-hole pre-edge states involving the N 1s and C 1s core levels of acetonitrile have been recorded by means of high-resolution single-channel photoelectron spectroscopy using hard X-ray excitation. The data are interpreted with the aid of ab initio quantum chemical calculations, which take into account the direct or conjugate nature of this type of electronic states. Furthermore, the photoelectron spectra of N 1s and C 1s singly core-ionized states have been measured. From these spectra, the chemical shift between the two C 1s−1 states is estimated. Finally, by utilizing C 1s single and double core-ionization potentials, initial and final state effects for the two inequivalent carbon atoms have been investigated

    The effect of intracranial stent implantation on the curvature of the cerebrovasculature

    Get PDF
    BACKGROUND AND PURPOSE: Recently, the use of stents to assist in the coiling and repair of wide-neck aneurysms has been shown to be highly effective; however, the effect of these stents on the RC of the parent vessel has not been quantified. The purpose of this study was to quantify the effect of intracranial stenting on the RC of the implanted artery using 3D datasets. MATERIALS AND METHODS: Twenty-four patients receiving FDA-approved neurovascular stents to support coil embolization of brain aneurysms were chosen for this study. The stents were located in the ICA, ACA, or MCA. We analyzed C-arm rotational angiography and contrast-enhanced cone beam CT datasets before and after stent implantation, respectively, to ascertain changes in vessel curvature. The images were reconstructed, and the vessel centerline was extracted. From the centerline, the RC was calculated. RESULTS: The average implanted stent length was 25.4 +/- 5.8 mm, with a pre-implantation RC of 7.1 +/- 2.1 mm and a postimplantation RC of 10.7 +/- 3.5 mm. This resulted in a 3.6 +/- 2.7 mm change in the RC due to implantation (P \u3c .0001), more than a 50% increase from the pre-implantation value. There was no difference in the change of RC for the different locations studied. The change in RC was not impacted by the extent of coil packing within the aneurysm. CONCLUSIONS: The implantation of neurovascular stents can be shown to have a large impact on the RC of the vessel. This will lead to a change in the local hemodynamics and flow pattern within the aneurysm

    Single and multiple excitations in double-core-hole states of free water molecules

    Get PDF
    We present a combined experimental and theoretical study of the double-core-hole photoelectron spectrum obtained in isolated water molecules irradiated with hard x-rays above the oxygen K−2 threshold. States of the type O K−2V and multiply excited states are created by single-photon absorption and subsequent one-electron emission. A detailed analysis enabled by high experimental resolution reveals dissociative nuclear dynamics in the K−2V pre-edge states. At the binding energies above the K−2 double-ionization potential, a complex spectral pattern is observed and attributed to highly excited states involving multiple shake-up excitation processes with the aid of state-of-the-art theoretical calculations. A strong broadening due to the nuclear motion indicates a highly dissociative nature of these multiply excited states, in agreement with the theoretical analysis

    Quantitative assessment of device-clot interaction for stent retriever thrombectomy

    Get PDF
    PURPOSE: Rapid revascularization in emergent large vessel occlusion with endovascular embolectomy has proven clinical benefit. We sought to measure device-clot interaction as a potential mechanism for efficient embolectomy. METHODS: Two different radiopaque clot models were injected to create a middle cerebral artery occlusion in a patient-specific vascular phantom. A radiopaque stent retriever was deployed within the clot by unsheathing the device or a combination of unsheathing followed by pushing the device (n=8/group). High-resolution cone beam CT was performed immediately after device deployment and repeated after 5 min. An image processing pipeline was created to quantitatively evaluate the volume of clot that integrates with the stent, termed the clot integration factor (CIF). RESULTS: The CIF was significantly different for the two deployment variations when the device engaged the hard clot (p=0.041), but not the soft clot (p=0.764). In the hard clot, CIF increased significantly between post-deployment and final imaging datasets when using the pushing technique (p=0.019), but not when using the unsheathing technique (p=0.067). When we investigated the effect of time on CIF in the different clot models disregarding the technique, the CIF was significantly increased in the final dataset relative to the post-deployment dataset in both clot models (p=0.004-0.007). CONCLUSIONS: This study demonstrates in an in vitro system the benefit of pushing the Trevo stent during device delivery in hard clot to enhance integration. Regardless of delivery technique, clot-device integration increased in both clot models by waiting 5 min
    corecore