24 research outputs found

    Altered Host Immunity, Human T Lymphotropic Virus Type I Replication, and Risk of Adult T-Cell Leukemia/Lymphoma: A Prospective Analysis from the ATL Cohort Consortium

    Get PDF
    Background: Adult T-cell leukemia/lymphoma (ATL) is a rare and often fatal outcome of infection with human T-lymphotropic virus type I (HTLV-I). Altered host immunity in HTLV-I carriers has been postulated as a risk factor for ATL, but is not well understood. Methods: We prospectively examined well-validated serologic markers of HTLV-I pathogenesis and host immunity in 53 incident ATL cases and 150 carefully matched asymptomatic HTLV-I carriers from eight population-based studies in Japan, Jamaica, the United States and Brazil. We used multivariable conditional logistic regression, conditioned on the matching factors (cohort/race, age, sex, and sample collection year), to evaluate the biomarkers’ associations with ATL in all subjects and by years (≤5, >5) from blood draw to ATL diagnosis. Results: In the pooled population, above-median soluble interleukin-2-receptor-alpha levels (sIL2R, v. ≤ median; odds ratio (OR), 95% confidence interval (CI)=4.08, 1.47-11.29) and anti-Tax seropositivity (anti-Tax; OR, 95% CI=2.97, 1.15-7.67), which indicate T cell activation and HTLV-I replication, respectively, were independently associated with an increased ATL risk. Above-median total immunoglobulin E levels (v. ≤ median; OR, 95% CI=0.45, 0.19-1.06), which indicate type 2 (B cell) activation, predicted a lower ATL risk. The sIL2R and anti-Tax associations with ATL were stronger in samples collected ≤5 years pre-diagnosis. Conclusions: The biomarker profile predictive of ATL risk suggests a role for heightened T cell activation and HTLV-I replication and diminished type 2 immunity in the etiology of ATL in HTLV-I carriers. Translation of these findings to clinical risk prediction or early ATL detection requires further investigation. Acknowledgements: This abstract is presented on behalf of the ATL Cohort Consortium

    Editorial: HTLV in the Americas

    No full text

    Brain Metabolism Changes in Patients Infected with HTLV-1

    Get PDF
    The Human T-cell leukemia virus type-I (HTLV-1) is the causal agent of HTLV-associated myelopathy/Tropical Spastic Paraparesis (HAM/TSP). HAM/TSP is the result of demyelination and cell death in the spinal cord and disruption of the blood-brain barrier (BBB), mediated by a virus-induced inflammatory response. In this study, we applied Positron Emission Tomography with 18F-fluordeoxyglucose (18F-FDG PET) to evaluate brain metabolism in a group of 47 patients infected with HTLV-1, and 18 healthy controls. Patients were divided into three groups according to their neurological symptoms. A machine learning (ML) based Gaussian Processes classification algorithm (GPC) was applied to classify between patient groups and controls and also to organize the three patient groups, based on gray and white matter brain metabolism. We found that GPC was able to differentiate the HAM/TSP group from controls with 85% accuracy (p = 0.003) and the asymptomatic seropositive patients from controls with 85.7% accuracy (p = 0.001). The weight map suggests diffuse cortical hypometabolism in both patient groups when compared to controls. We also found that the GPC could separate the asymptomatic HTLV-1 patients from the HAM/TSP patients, but with a lower accuracy (72.7%, p = 0.026). The weight map suggests a diffuse pattern of lower metabolism in the asymptomatic group when compared to the HAM/TSP group. These results are compatible with distinctive patterns of glucose uptake into the brain of HTLV-1 patients, including those without neurological symptoms, which differentiate them from controls. Furthermore, our results might unveil surprising aspects of the pathophysiology of HAM/TSP and related diseases, as well as new therapeutic strategies

    Ultra-Deep Sequencing of HIV-1 near Full-Length and Partial Proviral Genomes Reveals High Genetic Diversity among Brazilian Blood Donors.

    No full text
    BACKGROUND:Here, we aimed to gain a comprehensive picture of the HIV-1 diversity in the northeast and southeast part of Brazil. To this end, a high-throughput sequencing-by-synthesis protocol and instrument were used to characterize the near full length (NFLG) and partial HIV-1 proviral genome in 259 HIV-1 infected blood donors at four major blood centers in Brazil: Pro-Sangue foundation (SĂŁo Paulo state (SP), n 51), Hemominas foundation (Minas Gerais state (MG), n 41), Hemope foundation (Recife state (PE), n 96) and Hemorio blood bank (Rio de Janeiro (RJ), n 70). MATERIALS AND METHODS:A total of 259 blood samples were obtained from 195 donors with long-standing infections and 64 donors with a lack of stage information. DNA was extracted from the peripheral blood mononuclear cells (PBMCs) to amplify the HIV-1 NFLGs from five overlapping fragments. The amplicons were molecularly bar-coded, pooled, and sequenced by Illumina paired-end protocol. RESULTS:Of the 259 samples studied, 208 (80%) NFLGs and 49 (18.8%) partial fragments were de novo assembled into contiguous sequences and successfully subtyped. Of these 257 samples, 183 (71.2%) were pure subtypes consisting of clade B (n = 167, 65%), C (n = 10, 3.9%), F1 (n = 4, 1.5%), and D (n = 2, 0.7%). Recombinant viruses were detected in 74 (28.8%) samples and consist of unique BF1 (n = 41, 15.9%), BC (n = 7, 2.7%), BCF1 (n = 4, 1.5%), CF1 and CDK (n = 1, 0.4%, each), CRF70_BF1 (n = 4, 1.5%), CRF71_BF1 (n = 12, 4.7%), and CRF72_BF1 (n = 4, 1.5%). Evidence of dual infection was detected in four patients coinfected with the same subtype (n = 3) and distinct subtype (n = 1). CONCLUSION:Based on this work, subtype B appears to be the prevalent subtype followed by a high proportion of intersubtype recombinants that appeared to be arising continually in this country. Our study represents the largest analysis of the viral NFLG ever undertaken worldwide and provides insights into the understanding the genesis of the HIV-1 epidemic in this particular area of South America and informs vaccine design and clinical trials

    Schematic representation of the NFLGs and breakpoint profiles of the recombinant sequences from proviral DNA are generated by a deep sequencing approach identified in this study.

    No full text
    <p>Sequences were mapped relative to the HXB2 numbering system. HIV subtypes are color codes and indicated at the bottom. CRF70_BF1 variants are boxed with red rectangle squares, CRF71_BF1 with blue rectangle squares, and CRF72_BF1 with orange rectangle squares.</p

    Summary of the subtype distribution of viruses from the 257 long-standing HIV-1 infected blood donors analyzed.

    No full text
    <p>The number of viruses that belong to each subtype is indicated in the relevant bar chart section. The regions of origin are color-coded and indicated by arrows.</p
    corecore