64 research outputs found
Multimodality labeling strategies for the investigation of nanocrystalline cellulose biodistribution in a mouse model of breast cancer
Methods We have developed a nuclear and fluorescence labeling strategy for nanocrystalline cellulose (CNC), an emerging biomaterial with versatile chemistry and facile preparation from renewable sources. We modified CNC through 1,1′-carbonyldiimidazole (CDI) activation with radiometal chelators desferrioxamine B and 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), allowing for the labeling with zirconium-89 (t½ = 78.41 h) and copper-64 (t½ = 12.70 h), respectively, for non-invasive positron emission tomography (PET) imaging. The far-red fluorescent dye Cy5 was added for ex vivo optical imaging, microscopy and flow cytometry. The multimodal CNC were evaluated in the syngeneic orthotopic 4T1 tumor model of human stage IV breast cancer. Results Modified CNC exhibited low cytotoxicity in RAW 264.7 macrophages over 96 h, and high radiolabel stability in vitro. After systemic administration, radiolabeled CNC were rapidly sequestered to the organs of the reticulo-endothelial system (RES), indicating immune recognition and no passive tumor targeting by the enhanced permeability and retention (EPR) effect. Modification with NOTA was a more favorable strategy in terms of radiolabeling yield, specific radioactivity, and both the radiolabel and dispersion stability in physiological conditions. Flow cytometry analysis of Cy5-positive immune cells from the spleen and tumor corroborated the uptake of CNC to phagocytic cells. Conclusions Future studies on the in vivo behavior of CNC should be concentrated on improving the nanomaterial stability and circulation half-life under physiological conditions and optimizing further the labeling yields for the multimodality imaging strategy presented. Advances in knowledge Our studies constitute one of the first accounts of a multimodality nuclear and fluorescent probe for the evaluation of CNC biodistribution in vivo and outline the pitfalls in radiometal labeling strategies for future evaluation of targeted CNC-based drug delivery systems. Implications for patient care Quantitative and sensitive molecular imaging methods provide information on the structure–activity relationships of the nanomaterial and guide the translation from in vitro models to clinically relevant animal models.Peer reviewe
A Pretargeted Approach for the Multimodal PET/NIRF Imaging of Colorectal Cancer
The complementary nature of positron emission tomography (PET) and near-infrared fluorescence (NIRF) imaging makes the development of strategies for the multimodal PET/NIRF imaging of cancer a very enticing prospect. Indeed, in the context of colorectal cancer, a single multimodal PET/NIRF imaging agent could be used to stage the disease, identify candidates for surgical intervention, and facilitate the image-guided resection of the disease. While antibodies have proven to be highly effective vectors for the delivery of radioisotopes and fluorophores to malignant tissues, the use of radioimmunoconjugates labeled with long-lived nuclides such as 89Zr poses two important clinical complications: high radiation doses to the patient and the need for significant lag time between imaging and surgery. In vivo pretargeting strategies that decouple the targeting vector from the radioactivity at the time of injection have the potential to circumvent these issues by facilitating the use of positron-emitting radioisotopes with far shorter half-lives. Here, we report the synthesis, characterization, and in vivo validation of a pretargeted strategy for the multimodal PET and NIRF imaging of colorectal carcinoma. This approach is based on the rapid and bioorthogonal ligation between a trans-cyclooctene- and fluorophore-bearing immunoconjugate of the huA33 antibody (huA33-Dye800-TCO) and a 64Cu-labeled tetrazine radioligand (64Cu-Tz-SarAr). In vivo imaging experiments in mice bearing A33 antigen-expressing SW1222 colorectal cancer xenografts clearly demonstrate that this approach enables the non-invasive visualization of tumors and the image-guided resection of malignant tissue, all at only a fraction of the radiation dose created by a directly labeled radioimmunoconjugate. Additional in vivo experiments in peritoneal and patient-derived xenograft models of colorectal carcinoma reinforce the efficacy of this methodology and underscore its potential as an innovative and useful clinical tool
Heuristic Model Selection for Leading Indicators in Russia and Germany
Business tendency survey indicators are widely recognized as a key instrument for business cycle forecasting. Their leading indicator property is assessed with regard to forecasting industrial production in Russia and Germany. For this purpose, vector autoregressive (VAR) models are specified and estimated to construct forecasts. As the potential number of lags included is large, we compare full's specified VAR models with subset models obtained using a Genetic Algorithm enabling in multivariate lag structures. The problem is complicated by the fact that a structural break and seasonal variation of indicators have to be taken into account. The models allow for a comparison of the dynamic adjustment and the forecasting performance of the leading indicators for both countries revealing marked differences between Russia and Germany
Submicrometer Pattern Fabrication by Intensification of Instability in Ultrathin Polymer Films under a Water-Solvent Mix
Dewetting of ultrathin (< 100 nm) polymer films, by heating above the glass
transition, produces droplets of sizes of the order of microns and mean
separations between droplets of the order of tens of microns. These relatively
large length scales are because of the weak destabilizing van der Waals forces
and the high surface energy penalty required for deformations on small scales.
We show a simple, one-step versatile method to fabricate sub-micron (>~100 nm)
droplets and their ordered arrays by room temperature dewetting of ultrathin
polystyrene (PS) films by minimizing these limitations. This is achieved by
controlled room temperature dewetting under an optimal mixture of water,
acetone and methyl-ethyl ketone (MEK). Diffusion of organic solvents in the
film greatly reduces its glass transition temperature and the interfacial
tension, but enhances the destabilizing field by introduction of electrostatic
force. The latter is reflected in a change in the exponent, n of the
instability length scale, {\lambda} ~h^n, where h is the film thickness and n =
1.51 \pm 0.06 in the case of water-solvent mix, as opposed to its value of 2.19
\pm 0.07 for dewetting in air. The net outcome is more than one order of
magnitude reduction in the droplet size as well as their mean separation and
also a much faster dynamics of dewetting. We also demonstrate the use of this
technique for controlled dewetting on topographically patterned substrates with
submicrometer features where dewetting in air is either arrested, incomplete or
unable to produce ordered patterns
Toward a Unifying Framework for Exploring Fit and Flexibility in Strategic Human Resource Management
- …