4 research outputs found

    Selection of the optimal extraction protocol to investigate the interaction between trace elements and environmental plastic

    Get PDF
    The interaction between environmental plastic and trace elements is an issue of concern. Understanding their interaction mechanisms is key to evaluate the potential threats for the environment. To this regard, consolidating confidence in extraction protocols can help in understanding the amount of different species present on plastic surface, as well as the potential mobility of trace elements present inside the plastic matrix (e.g., additives). Here we tested the efficacy of different reagents to mimic the elemental phases bonded to meso- and microplastic in the environment, in relation to the grade of ageing and the polymer composition. Results showed that a relatively high portion of trace elements is bonded in a weak phase and that other phases abundant in other matrices (e.g., oxides and bonded to organic matter) are only present to a limited degree in the plastic samples. The comparison of different sample types highlighted the important role of plastic ageing in governing interactions with trace elements, while the polymer composition has a limited influence on this process. Finally, the future steps toward a tailored extraction scheme for environmental plastic are proposed

    Freshwater Lacustrine Zooplankton and Microplastic: An Issue to Be Still Explored

    No full text
    Lakes are essentially interlinked to humans as they provide water for drinking, agriculture, industrial and domestic purposes. The upsurge of plastic usage, its persistence, and potential detrimental effects on organisms cause impacts on the trophic food web of freshwater ecosystems; this issue, however, still needs to be explored. Zooplankton worldwide is commonly studied as an indicator of environmental risk in aquatic ecosystems for several pollutants. The aim of the review is to link the existing knowledge of microplastic pollution in zooplankton to assess the potential risks linked to these organisms which are at the first level of the lacustrine trophic web. A database search was conducted through the main databases to gather the relevant literature over the course of time. The sensitivity of zooplankton organisms is evident from laboratory studies, whereas several knowledge gaps exist in the understanding of mechanisms causing toxicity. This review also highlights insufficient data on field studies hampering the understanding of the pollution extent in lakes, as well as unclear trends on ecosystem-level cascading effects of microplastics (MPs) and mechanisms of toxicity (especially in combination with other pollutants). Therefore, this review provides insight into understanding the overlooked issues of microplastic in lake ecosystems to gain an accurate ecological risk assessment

    Assessing sources and fractions of metals associated with environmental plastics: a case study in Lake Como (Italy)

    No full text
    Understanding plastic-metal interactions is paramount to unveil the ecological risks of plastic pollution. Besides including a (variable) amount of metal-containing additives, plastic objects can adsorb metals on their surface in the environment. This work aims at measuring and assessing the possible origin of metals in environmental plastics deposited along the shores of Lake Como (Italy). Samples were characterized through Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and water contact angle. Then, the total metal load was analysed by acid digestion. Surface extraction with nitric acid was also performed to detect labile metals and a three-step extraction scheme enabled the determination of physisorbed, carbonate-bonded and organic matter-bonded metals, respectively. Eighteen metals (Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Ag, Cd, Sn, Ba, Pb and U) were analysed in total. Newly produced plastic items were also analysed as a reference. Our findings revealed that environmental samples retained a higher concentration of metals compared to virgin ones, especially in the loosely bonded acid-extractable fractions, indicating their potential bioavailability. The source of metals on plastics was extremely variable: some metals were predominantly sorbed from the environment (e.g., Mn and Pb), and others were mainly leached from the plastic matrix (Ba, Cu and Ti) or had a mixed origin (Zn, Fe, Sn, Sr and Al). This work shed light on the changes in bioavailability of metals induced by plastic environmental ageing, set baseline values for a freshwater site, and provided insights into the potential bioavailability exerted by metals associated with plastic litter
    corecore