24 research outputs found

    Simulations and scattering functions of polyelectrolyte-macroion complexes

    Get PDF
    Using Monte Carlo simulations of complex formation between a polyelectrolyte chain and an oppositely charged macroion, we calculated the scattering function of the polyelectrolyte chain. We investigated the case of the isolated polyelectrolyte chain and studied the effect and influence of key parameters such as the ionic concentration of the solution, polyelectrolyte length and intrinsic rigidity on the scattering function. Then, we focused on the polyelectrolyte-macroion complex by calculating the structure factor S(q) of the adsorbed polyelectrolyte chain. Typical conformations ranging from coils, extended chains to solenoids are revealed and the corresponding S(q) analysed. The effects of ionic concentration, chain length and intrinsic rigidity and relative size ratio between the polyelectrolyte and the macroion are investigated. Important effects on the structure factor of the adsorbed polyelectrolyte are observed when the macroion is partially or totally wrapped by the polyelectrolyte. Distance correlations between the polyelectrolyte monomer positions at the surface of the macroion induce the formation of peaks in the fractal regime of S(q). For semiflexible chains, when solenoid conformations are observed, the position of the peaks in the fractal regime corresponds directly to the separation distance between the turns. The formation of a protruding tail in solution is also observed through the formation in the fractal regime of a linear domai

    Polypeptide-Nanoparticle Interactions and Corona Formation Investigated by Monte Carlo Simulations

    No full text
    Biomacromolecule activity is usually related to its ability to keep a specific structure. However, in solution, many parameters (pH, ionic strength) and external compounds (polyelectrolytes, nanoparticles) can modify biomacromolecule structure as well as acid/base properties, thus resulting in a loss of activity and denaturation. In this paper, the impact of neutral and charged nanoparticles (NPs) is investigated by Monte Carlo simulations on polypeptide (PP) chains with primary structure based on bovine serum albumin. The influence of pH, salt valency, and NP surface charge density is systematically studied. It is found that the PP is extended at extreme pH, when no complex formation is observed, and folded at physiological pH. PP adsorption around oppositely-charged NPs strongly limits chain structural changes and modifies its acid/base properties. At physiological pH, the complex formation occurs only with positively-charged NPs. The presence of salts, in particular those with trivalent cations, introduces additional electrostatic interactions, resulting in a mitigation of the impact of negative NPs. Thus, the corona structure is less dense with locally-desorbed segments. On the contrary, very limited impact of salt cation valency is observed when NPs are positive, due to the absence of competitive effects between multivalent cations and NP

    Acid/Base and conformational properties of polyelectrolytes by Monte Carlo simulations : the role of explicit ions, nanoparticles and pH

    No full text
    Les systèmes polymériques et colloïdaux sont impliqués dans de nombreux processus naturels et applications dans les domaines de la nanotechnologie et du biomédical. Dans un solvant polaire, les groupements fonctionnels acides et/ou basiques des polyélectrolytes se dissocient en ions libres et en groupes chargés. Ainsi, des interactions électrostatiques de courte et longue portée apparaissent et les polyélectrolytes s'associent avec d'autres macromolécules chargées. De plus, la réactivité et les propriétés conformationnelles des polyélectrolytes et particules colloïdales sont influencées par les contre-ions et co-ions qui forment un nuage ionique autour des molécules. La compréhension des paramètres physico-chimiques, tels le pH, la concentration et valence du sel, la charge des particules colloïdales, etc., qui influencent la formation de ces complexes est indispensable afin d'améliorer et de rationaliser leurs utilisations. L'étude de ces processus par simulations Monte Carlo représente le fil d'Ariane de ce travail. Les résultats sont présentés sous forme de publications originales

    Effect of deposition, detachment and aggregation processes on nanoparticle transport in porous media using Monte Carlo simulations

    Get PDF
    A novel off-lattice three-dimensional coarse-grained Monte Carlo model is developed to study engineered nanoparticle (ENP) behavior in porous media. Based on individual particle tracking and on the assumption that different physicochemical processes may occur with different probabilities, our model is used to independently evaluate the influence of homoaggregation, attachment and detachment processes on ENP transport and retention inside porous media made of colloidal collectors. The possibility of straining, i.e. trapping of ENPs or aggregates that are too large to pass pore necks, is also included in the model. The overall probability of ENP retention as a function of the above mentioned processes is quantified using functional tests in the form of a alpha(global)(t(ref)) retention parameter. High alpha(global)(t(ref)) values were obtained for moderate probabilities of homoaggregation between ENPs (alpha(ENP-ENP)) and very small probabilities of attachment between ENPs and collectors (alpha(att)), thus indicating the important role of homoaggregation and attachment in ENP retention. Moreover, attaching ENPs and large aggregates was found to cause pore neck enclosure and thus largely contributed to the straining of unbound ENPs. An analysis of depth distribution of retained ENPs revealed that, depending on the dominating conditions, the number of ENPs was decreasing monotonously or exponentially with depth. The introduction of the ENP detachment probability (alpha(det)) from collectors resulted in an increased ENP occurrence at the porous media matrix outlet. It was also found that different sets of alpha(det) and alpha(att) values, reflecting different ENPs and collector physicochemical properties and inter-particle forces, lead to identical alpha(global)(t(ref)) values. This constitutes an important outcome indicating that alpha(global)(t(ref)) values determined from functional tests are not mechanistic but operationally defined parameters and thus cannot be deemed predictive beyond these tests

    Dynamics of ions in model charged porous media: Influence of polyelectrolytes

    No full text
    We have studied by means of Brownian dynamics simulations the dynamics of small ions in model charged porous media. We have focused on the influence on this dynamics of short polyelectrolytes with the same charge sign as the solid phase. We have compared the self-diffusion coefficients of counterions of four families of systems with different compositions (presence or not of charged obstacles and of polyelectrolytes). Our main result is that the presence of polyelectrolytes only modulates a behavior we had already observed before: In the domain where the porosity is relatively high compared to the Debye length, diffusion coefficients of counterions increase when the porosity decreases. Moreover, we have shown that, in the systems investigated here without charges on obstacles, the self-diffusion of counterions is mostly affected by the presence of polyelectrolytes and not by concentration effects, contrarily to co-ions. Also, we have seen that even if the density of the probability of presence of counterions in the vicinity of polyelectrolytes is much higher than that on obstacles, the residence time of ions around polyelectrolytes is shorter than around charged obstacles

    Simulations and scattering functions of polyelectrolyte-macroion complexes

    No full text
    Using Monte Carlo simulations of complex formation between a polyelectrolyte chain and an oppositely charged macroion, we calculated the scattering function of the polyelectrolyte chain. We investigated the case of the isolated polyelectrolyte chain and studied the effect and influence of key parameters such as the ionic concentration of the solution, polyelectrolyte length and intrinsic rigidity on the scattering function. Then, we focused on the polyelectrolyte–macroion complex by calculating the structure factor S(q) of the adsorbed polyelectrolyte chain. Typical conformations ranging from coils, extended chains to solenoids are revealed and the corresponding S( q) analysed. The effects of ionic concentration, chain length and intrinsic rigidity and relative size ratio between the polyelectrolyte and the macroion are investigated. Important effects on the structure factor of the adsorbed polyelectrolyte are observed when the macroion is partially or totally wrapped by the polyelectrolyte. Distance correlations between the polyelectrolyte monomer positions at the surface of the macroion induce the formation of peaks in the fractal regime of S( q) . For semiflexible chains, when solenoid conformations are observed, the position of the peaks in the fractal regime corresponds directly to the separation distance between the turns. The formation of a protruding tail in solution is also observed through the formation in the fractal regime of a linear domain

    Influence of Explicit Ions on Titration Curves and Conformations of Flexible Polyelectrolytes: A Monte Carlo Study

    No full text
    Acid/base and conformational properties of a weak polyelectrolyte chain surrounded by explicit ions (counterions and salt particles) are investigated using Monte Carlo simulations. The influence of the pH, monomer size, presence of explicit ions, salt particles, salt size, and valency on the polyelectrolyte titration process is systematically investigated. It is shown that the presence of explicit ions, the increase in pH and monomer sizes, and the decrease in salt radius are parameters that favor the monomer deprotonation processes hence affecting the global acid/base polyelectrolyte chain properties. The competition between attractive and repulsive, long-range and local electrostatic interactions leads to a heterogeneous distribution of charges and ions along the polyelectrolyte backbones. This subtle electrostatic competition leads to equilibrated chain conformations ranging from extended to globular conformations. A simple screening effect is achieved with monovalent salt resulting in a slight limitation of the formation of extended structures at high pH values. Focusing on trivalent salt, the local complexation of several chain monomers around each trivalent cation leads to the formation of collapsed structures. The decrease in the size of trivalent cations promotes the deprotonation process, in particular, when trivalent salt cations are smaller than the monomer size
    corecore