1,599 research outputs found
Development of TPS flight test and operational instrumentation
Thermal and flow sensor instrumentation was developed for use as an integral part of the space shuttle orbiter reusable thermal protection system. The effort was performed in three tasks: a study to determine the optimum instruments and instrument installations for the space shuttle orbiter RSI and RCC TPS; tests and/or analysis to determine the instrument installations to minimize measurement errors; and analysis using data from the test program for comparison to analytical methods. A detailed review of existing state of the art instrumentation in industry was performed to determine the baseline for the departure of the research effort. From this information, detailed criteria for thermal protection system instrumentation were developed
Concept for a Large Scalable Space Telescope: In-Space Assembly
We present a conceptual design for a scalable (10-50 meter segmented filled-aperture) space observatory operating at UV-optical-near infrared wavelengths. This telescope is designed for assembly in space by robots, astronauts or a combination of the two, as envisioned in NASA s Vision for Space Exploration. Our operations concept for this-space telescope provides for assembly and check-out in an Earth Moon L2 (EML2) orbit, and transport to a Sun-Earth L2 (SEL2) orbit for science operations and routine servicing, with return to EML2 for major servicing. We have developed and analyzed initial designs for the optical, structural, thermal and attitude control systems for a 30-m aperture space telescope. We further describe how the separate components are packaged for launch by heavy lift vehicle(s) and the approach for the robot assembly of the telescope from these components
Supporting caregivers of veterans with Alzheimer’s disease and traumatic brain injury: study protocol for a randomized controlled trial
Background: Patients with Alzheimer's disease and related dementias (ADRD) and traumatic brain injury (TBI) and their caregivers require cognitive and behavioral symptom management, interdisciplinary care, support for caregivers, and seamless care coordination between providers. Caring for someone with ADRD or TBI is associated with higher rates of psychological morbidity and burden, social isolation, financial hardship, and deterioration of physical health. Tremendous need exists for primary care-based interventions that concurrently address the care needs of dyads and aim to improve care and outcomes for both individuals with ADRD and TBI and their family caregivers.
Methods: The Aging Brain Care Acquiring New Skills While Enhancing Remaining Strengths (ABC ANSWERS) study is a randomized controlled trial that tests the effectiveness of an intervention based on two evidence-based programs that have been developed for and previously tested in populations with ADRD, TBI, stroke, and late-life depression and/or who have survived an intensive care unit stay. This study includes 200 dyads comprised of a veteran with a diagnosis of ADRD or TBI and the veteran's primary informal caregiver. Dyads are randomized to receive the ABC ANSWERS intervention or routine Veterans Health Administration (VHA) primary care with a standardized educational and resource information packet. Data collection occurs at baseline and three follow-up time points (3 months, 6 months, and 12 months). The primary outcome is caregiver quality of life (QoL). A secondary measure for the caregiver is caregiver burden. Secondary measures for both the veteran and caregiver include symptoms of depression and anxiety.
Discussion: The ABC ANSWERS intervention integrates common features of an evidence-based collaborative care model for brain health while concurrently attending to the implementation barriers of delivering care and skills to dyads. We hypothesize that caregivers in dyads randomized to the ABC ANSWERS program will experience higher levels of QoL and lower levels of depression, anxiety, dyadic strain, and caregiver burden at 12 months than those receiving usual VHA primary care
Multiple-Point and Multiple-Time Correlations Functions in a Hard-Sphere Fluid
A recent mode coupling theory of higher-order correlation functions is tested
on a simple hard-sphere fluid system at intermediate densities. Multi-point and
multi-time correlation functions of the densities of conserved variables are
calculated in the hydrodynamic limit and compared to results obtained from
event-based molecular dynamics simulations. It is demonstrated that the mode
coupling theory results are in excellent agreement with the simulation results
provided that dissipative couplings are included in the vertices appearing in
the theory. In contrast, simplified mode coupling theories in which the
densities obey Gaussian statistics neglect important contributions to both the
multi-point and multi-time correlation functions on all time scales.Comment: Second one in a sequence of two (in the first, the formalism was
developed). 12 pages REVTeX. 5 figures (eps). Submitted to Phys.Rev.
Phase separation in mixtures of colloids and long ideal polymer coils
Colloidal suspensions with free polymer coils which are larger than the
colloidal particles are considered. The polymer-colloid interaction is modeled
by an extension of the Asakura-Oosawa model. Phase separation occurs into
dilute and dense fluid phases of colloidal particles when polymer is added. The
critical density of this transition tends to zero as the size of the polymer
coils diverges.Comment: 5 pages, 3 figure
Phase behaviour of a model of colloidal particles with a fluctuating internal state
Colloidal particles are not simple rigid particles, in general an isolated
particle is a system with many degrees of freedom in its own right, e.g., the
counterions around a charged colloidal particle.The behaviour of model
colloidal particles, with a simple phenomenological model to account for these
degrees of freedom, is studied. It is found that the interaction between the
particles is not pairwise additive. It is even possible that the interaction
between a triplet of particles is attractive while the pair interaction is
repulsive. When this is so the liquid phase is either stable only in a small
region of the phase diagram or absent altogether.Comment: 12 pages including 4 figure
Web-based participatory surveillance of infectious diseases: the Influenzanet participatory surveillance experience.
To overcome the limitations of the state-of-the-art influenza surveillance systems in Europe, we established in 2008 a European-wide consortium aimed at introducing an innovative information and communication technology approach for a web-based surveillance system across different European countries, called Influenzanet. The system, based on earlier efforts in The Netherlands and Portugal, works with the participation of the population in each country to collect real-time information on the distribution of influenza-like illness cases through web surveys administered to volunteers reporting their symptoms (or lack of symptoms) every week during the influenza season. Such a large European-wide web-based monitoring infrastructure is intended to rapidly identify public health emergencies, contribute to understanding global trends, inform data-driven forecast models to assess the impact on the population, optimize the allocation of resources, and help in devising mitigation and containment measures. In this article, we describe the scientific and technological issues faced during the development and deployment of a flexible and readily deployable web tool capable of coping with the requirements of different countries for data collection, during either a public health emergency or an ordinary influenza season. Even though the system is based on previous successful experience, the implementation in each new country represented a separate scientific challenge. Only after more than 5 years of development are the existing platforms based on a plug-and-play tool that can be promptly deployed in any country wishing to be part of the Influenzanet network, now composed of The Netherlands, Belgium, Portugal, Italy, the UK, France, Sweden, Spain, Ireland, and Denmark
Phase diagrams of classical spin fluids: the influence of an external magnetic field on the liquid-gas transition
The influence of an external magnetic field on the liquid-gas phase
transition in Ising, XY, and Heisenberg spin fluid models is studied using a
modified mean field theory and Gibbs ensemble Monte Carlo simulations. It is
demonstrated that the theory is able to reproduce quantitatively all
characteristic features of the field dependence of the critical temperature
T_c(H) for all the three models. These features include a monotonic decrease of
T_c with rising H in the case of the Ising fluid as well as a more complicated
nonmonotonic behavior for the XY and Heisenberg models. The nonmonotonicity
consists in a decrease of T_c with increasing H at weak external fields, an
increase of T_c with rising H in the strong field regime, and the existence of
a minimum in T_c(H) at intermediate values of H. Analytical expressions for
T_c(H) in the large field limit are presented as well. The magnetic para-ferro
phase transition is also considered in simulations and described within the
mean field theory.Comment: 14 pages, 12 figures (to be submitted to Phys. Rev. E
Pressure Dependence of Born Effective Charges, Dielectric Constant and Lattice Dynamics in SiC
The pressure dependence of the Born effective charge, dielectric constant and
zone-center LO and TO phonons have been determined for -SiC by a linear
response method based on the linearized augmented plane wave calculations
within the local density approximation. The Born effective charges are found to
increase nearly linearly with decreasing volume down to the smallest volume
studied, , corresponding to a pressure of about 0.8 Mbar. This
seems to be in contradiction with the conclusion of the turnover behavior
recently reported by Liu and Vohra [Phys.\ Rev.\ Lett.\ {\bf 72}, 4105 (1994)]
for -SiC. Reanalyzing their procedure to extract the pressure dependence of
the Born effective charges, we suggest that the turnover behavior they obtained
is due to approximations in the assumed pressure dependence of the dielectric
constant , the use of a singular set of experimental data
for the equation of state, and the uncertainty in measured phonon frequencies,
especially at high pressure.Comment: 25 pages, revtex, 5 postscript figures appended, to be published in
Phys. Rev.
Transport Coefficients for Granular Media from Molecular Dynamics Simulations
Under many conditions, macroscopic grains flow like a fluid; kinetic theory
pred icts continuum equations of motion for this granular fluid. In order to
test the theory, we perform event driven molecular simulations of a
two-dimensional gas of inelastic hard disks, driven by contact with a heat
bath. Even for strong dissipation, high densities, and small numbers of
particles, we find that continuum theory describes the system well. With a bath
that heats the gas homogeneously, strong velocity correlations produce a
slightly smaller energy loss due to inelastic collisions than that predicted by
kinetic theory. With an inhomogeneous heat bath, thermal or velocity gradients
are induced. Determination of the resulting fluxes allows calculation of the
thermal conductivity and shear viscosity, which are compared to the predictions
of granular kinetic theory, and which can be used in continuum modeling of
granular flows. The shear viscosity is close to the prediction of kinetic
theory, while the thermal conductivity can be overestimated by a factor of 2;
in each case, transport is lowered with increasing inelasticity.Comment: 14 pages, 17 figures, 39 references, submitted to PRE feb 199
- …