3,524 research outputs found

    Improving student uptake and understanding of feedback through a dialogue model of assessment

    Get PDF
    Through the use of questionnaires, focus groups and a pilot study, this research examines student perception of assessment feedback and whether a dialogue model of assessment can aid in improving this perception. The findings of the study are that the dialogue model did improve student perception. It also identified the following recommendations for consideration: Recommendation 1: While a QE approach could be taken where a minimum standard of feedback is determined at University level, the researchers feel this might be restrictive and is better left to subject groups to determine. This minimum level can then be used as a QA check by internal moderators and at Quality Review events. It will be important to ensure that if feedback falls below this subject-determined minimum level that action is taken within the group to bring feedback up to the standard required. Recommendation 2: It should be written into the feedback policy that students have a right to a meeting to discuss feedback. This needs to be clearly expressed to ensure students recognize that this is not an opportunity to negotiate grades (as the researchers have personally experienced) and given in the spirit of helping the student develop. The researchers believe that as educators we should see the value in such meetings and make time for them. If good, constructive, clear feedback is given at the time of the assessment then there will be very few students who need to take up this opportunity. Recommendation 3: Within programme documentation when generic transferable skills are discussed there should be a requirement to show where the team are developing student understanding of the assessment process. Recommendation 4: Staff should be encouraged to include their marking scheme with the assessment brief. Recommendation 5: Monitor the result of the new assessment strategy in terms of student attainment and perception about the fairness of assessment. In particular identify how many modules have gone to single units of assessment and where this happens how students are supported with feedforward. Recommendation 6: Identify is there is a University standard expectation for particular types of assessment instrument at each level. This would help us to communicate lecturer expectations to students

    Nonlinear photon transport in a semiconductor waveguide-cavity system containing a single quantum dot: Anharmonic cavity-QED regime

    Full text link
    We present a semiconductor master equation technique to study the input/output characteristics of coherent photon transport in a semiconductor waveguide-cavity system containing a single quantum dot. We use this approach to investigate the effects of photon propagation and anharmonic cavity-QED for various dot-cavity interaction strengths, including weakly-coupled, intermediately-coupled, and strongly-coupled regimes. We demonstrate that for mean photon numbers much less than 0.1, the commonly adopted weak excitation (single quantum) approximation breaks down, even in the weak coupling regime. As a measure of the anharmonic multiphoton-correlations, we compute the Fano factor and the correlation error associated with making a semiclassical approximation. We also explore the role of electron--acoustic-phonon scattering and find that phonon-mediated scattering plays a qualitatively important role on the light propagation characteristics. As an application of the theory, we simulate a conditional phase gate at a phonon bath temperature of 2020 K in the strong coupling regime.Comment: To appear in PR

    Review of world experience and properties of materials for encapsulation of terrestrial photovoltaic arrays

    Get PDF
    Published and unpublished information relating to encapsulation systems and materials properties was collected by searching the literature and appropriate data bases (over 1,300 documents were selected and reviewed) and by personal contacts including site and company visits. A data tabulation summarizing world experience with terrestrial photovoltaic arrays (50 installations) is presented in the report. Based on criteria of properties, processability, availability, and cost, candidate materials were identified which have potential for use in encapsulation systems for arrays with a lifetime of over 20 years high reliability, an efficiency greater than 10 percent, a total price less than $500/kW, and a production capacity of 500,000 kW/yr. The recommended materials (all commercially available) include, depending upon the device design, various borosilicate and soda-lime glasses and numerous polymerics suitable for specific encapsulation system functions

    Phonon-dressed Mollow triplet in the regime of cavity-QED

    Full text link
    We study the resonance fluorescence spectra of a driven quantum dot placed inside a high QQ semiconductor cavity and interacting with an acoustic phonon bath. The dynamics is calculated using a time-convolutionless master equation obtained in the polaron frame. We demonstrate pronounced spectral broadening of the Mollow sidebands through cavity-emission which, for small cavity-coupling rates, increases quadratically with the Rabi frequency. However, for larger cavity coupling rates, this broadening dependence is found to be more complex. This field-dependent Mollow triplet broadening is primarily a consequence of the triplet peaks sampling different parts of the asymmetric phonon bath, and agrees directly with recent experiments with semiconductor micropillars. The influence from the detuned cavity photon bath and multi-photon effects is shown to play a qualitatively important role on the fluorescence spectra.Comment: 4 pages, 4 figure

    Characterizing Quantum Microwave Radiation and its Entanglement with Superconducting Qubits using Linear Detectors

    Full text link
    Recent progress in the development of superconducting circuits has enabled the realization of interesting sources of nonclassical radiation at microwave frequencies. Here, we discuss field quadrature detection schemes for the experimental characterization of itinerant microwave photon fields and their entanglement correlations with stationary qubits. In particular, we present joint state tomography methods of a radiation field mode and a two-level system. Including the case of finite quantum detection efficiency, we relate measured photon field statistics to generalized quasi-probability distributions and statistical moments for one-channel and two-channel detection. We also present maximum-likelihood methods to reconstruct density matrices from measured field quadrature histograms. Our theoretical investigations are supported by the presentation of experimental data, for which microwave quantum fields beyond the single-photon and Gaussian level have been prepared and reconstructed.Comment: 14 pages, 5 figure

    Methodology for designing accelerated aging tests for predicting life of photovoltaic arrays

    Get PDF
    A methodology for designing aging tests in which life prediction was paramount was developed. The methodology builds upon experience with regard to aging behavior in those material classes which are expected to be utilized as encapsulant elements, viz., glasses and polymers, and upon experience with the design of aging tests. The experiences were reviewed, and results are discussed in detail

    Feedback in a cavity QED system for control of quantum beats

    Full text link
    Conditional measurements on the undriven mode of a two-mode cavity QED system prepare a coherent superposition of ground states which generate quantum beats. The continuous system drive induces decoherence through the phase interruptions from Rayleigh scattering, which manifests as a decrease of the beat amplitude and an increase of the frequency of oscillation. We report recent experiments that implement a simple feedback mechanism to protect the quantum beat. We continuously drive the system until a photon is detected, heralding the presence of a coherent superposition. We then turn off the drive and let the superposition evolve in the dark, protecting it against decoherence. At a later time we reinstate the drive to measure the amplitude, phase, and frequency of the beats. The amplitude can increase by more than fifty percent, while the frequency is unchanged by the feedback.Comment: 13 pages, 5 figures, ICAP 2012 23rd International Conference on Atomic Physic
    • …
    corecore