128 research outputs found

    In vitro characterization of hydroxyapatite layers deposited by APS and HVOF thermal spraying methods

    Get PDF
    Titanium alloys are successfully used in medicine as implants due to their high mechanical properties and good biocompatibility. To improve implant osseointegration of titanium alloys, they are covered with hydroxyapatite because of its bioactive properties. Coating the implants with hydroxyapatite by thermal spraying, due to the temperatures developed during the deposition process, the structure can be degraded, leading to formation of secondary phases, such as TCP, TT CP, CaO. The paper presents the experimental results of hydroxyapatite layers deposition by two thermal spraying methods: Atmospheric Plasma Spraying (APS) and High Velocity Oxy-Fuel (HVOF). The microstructure of the deposited layers is characterized by X-ray diffraction analysis and electronic microscopy. The bioactivity of the hydroxyapatite layers was investigated in Simulated Body Fluid (SBF) by immersing the covered samples deposited by the two thermal spraying methods. In both cases the coatings did not present defects as cracks or microcracks. X-ray diffraction performed on hydroxyapatite deposited layers shows that the structure was strongly influenced by plasma jet temperature, the structure consisting mainly of TCP (Ca3PO4)2. The samples deposited by HVO F after immersing in SBF lead to formation of biological hydroxyapatite, certifying the good bioactivity of the coatings

    Interactions between Different Organosilicons and Archaeological Waterlogged Wood Evaluated by Infrared Spectroscopy

    Get PDF
    The goal of the study was to characterise chemical interactions between waterlogged archaeological wood and organosilicon compounds applied for its conservation to shed lights on the mechanism of wood dimensional stabilisation by the chemicals. Two alkoxysilanes (methyltrimethoxysilane and (3-mercaptopropyl) trimethoxysilane) and a siloxane (1,3-bis(diethylamino)-3-propoxypropanol)-1,1,3,3-tetramethyldisiloxane) were selected for the research since they already have been proven to effectively stabilise waterlogged wood upon drying. Fourier transform infrared spectroscopy was used for structural characterisation of the degraded wood and evaluation of reactivity of the applied chemicals with polymers in the wooden cell wall. The results obtained clearly show much stronger interactions in the case of alkoxysilanes than the siloxane, suggesting a different mechanism of wood stabilisation by these compounds. The results of this study together with other data obtained in our previous research on stabilisation of waterlogged archaeological wood with organosilicon compounds allow the conclusion that the mechanism of waterlogged wood stabilisation by the used alkoxysilanes is based on bulking the cell wall by silane molecules and wood chemical modification, while in the case of the applied siloxane, it builds upon filling the cell lumina

    Multidrug Resistance in Zoonotic Pathogens: Are Medicinal Plants a Therapeuthic Alternative?

    Get PDF
    Multidrug resistance (MDR) represents a complex phenomenon, caused not only by nondiscriminative antibiotic therapy in both human and animal medicine but also by the transfer of resistance genes between different bacteria. Animals besides different environments embody a niche for the development of resistant microbiomes, representing a serious threat to people not only as contacts but also as consumers/tourists. The epidemiological cycle of MDR bacteria is closed by changes in either their hosts or in their habitats. To prevent further spreading of MDR, natural solutions are investigated as efficacy, including in this category various compounds isolated from medicinal plants (quinones, flavones, flavonoids, and flavonols, tannins, coumarins, terpenoids and essential oils, alkaloids, lectins and polypeptides, etc.). The results of such studies are valuable for the medicine, but could the medicinal plants cover the gap for humans, animals, and the environment? This chapter aims at trying to answer this question

    Active Cellulose-Based Food Packaging and Its Use on Foodstuff

    Get PDF
    The essential role of active packaging is food quality improvement, which results in an extension of shelf life. Active packaging can also further enhance distribution from the origin point, and contributes to food waste reduction, offering greater sustainability. In this study, we introduced a new method for obtaining cellulose-based active packages, combining gamma irradiation as an eco-friendly activation process, and clove essential oil and cold-pressed rosehip seed oil as bioactive agents. Newly obtained bioactive materials were evaluated to assess their structural, hydrophobic, and morphological properties, thermal stability, and antioxidant and antimicrobial properties. The results showed that the plant oils induced their antimicrobial effects on paper, using both in vitro tests, against several bacterial strains (Gram-positive bacteria Listeria monocytogenes and Gram-negative bacteria Salmonella enteritidis and Escherichia coli), and in vivo tests, on fresh cheese curd and beef. Moreover, these oils can help control foodborne pathogens, which leads to extended shelf life

    Identification of the Most Relevant Quality Parameters for Berries – A review

    Get PDF
    Fresh fruit jointly to vegetables are an essential component of a healthy diet, able to decrease the risk of cardiovascular diseases and cancer. In the last years, their consumption has continued to grow rapidly linked to the increased public awareness of their health benefits, even if it remains below the recommended daily intake in many countries, due to barriers such as complacency and lack of willpower to change the diet. The attributes of berries, like chemical-physical and nutritional characteristics, microbial contamination, chemical contaminants as well as sensorial properties represent some very important quality parameters that must be determined in order to establish the quality of berries after ripening and during storage, until they reach their final destination (consumer). The aim of this study was to perform a literature review in order to determine the most relevant quality parameters of berries and to describe methods for their determination

    High aspect ratio cellulose nanofibrils from macroalgae Laminaria hyperborea cellulose extract via a zero-waste low energy process

    Get PDF
    Homogeneous high aspect ratio cellulose nanofibrils (CNFs) were prepared from Laminaria hyperborea (LH) seaweed cellulose without any initial mechanical, biological or chemical pre-treatments. Fourier-transform infrared spectrophotometry revealed that LH cellulose was of the cellulose Iα allomorph, typical of algal cellulose. Compared with wood derived CNF, significant enhancements in crystallinity, viscoelastic properties, water retention values (WRV) and morphological characteristics were identified with a single pass at 1 wt. % cellulose content through a high-pressure homogeniser. Further mechanical fibrillation did not lead to appreciable improvements in material properties that would justify the added energy consumption, which at a single pass is at least a factor of 10 lower than with wood cellulose processing. Good quality CNFs with little compromise in material properties were also obtainable at 2–3 wt. % cellulose contents as identified from viscoelastic analysis, WRV and morphological analysis. LHCNFs also showed good thermal stability, which in summary presents a multifunctional high value cellulose nanomaterial that can find application in various fields

    Correlation of Studies between Colour, Structure and Mechanical Properties of Commercially Produced ThermoWood® Treated Norway Spruce and Scots Pine

    Get PDF
    The thermal modification of wood has become the most-commonly commercialised wood modification process globally, with the ThermoWood® process currently being the most dominant. As with all commercial processes, there is a need to have a robust quality control system, with several small–scale studies undertaken to date investigating quality control using a range of analytical methods, culminating in a multi-year assessment of colour as a means of quality control. This study, as an extension to this multi-year assessment, further explores the colour of Norway spruce and Scots pine commercially modified by the ThermoWood® S and D processes, respectively, along with the mechanical properties and structural characterisation by Fourier transform infrared (FT–IR) spectroscopy and principal component analysis (PCA) to ascertain further correlations between colour and other measurable properties. Infrared spectroscopy indicated modifications in the amorphous carbohydrates and lignin, whereas the use of PCA allowed for the differentiation between untreated and modified wood. Colour measurements indicated reduced brightness, and shifting toward red and yellow colours after thermal modification, hardness values decreased, whereas MOE and MOR values were similar for modified wood compared to unmodified ones. However, by combining the colour measurements and PC scores, it was possible to differentiate between the two modification processes (Thermo–S and Thermo–D). By combining the mechanical properties and PC scores, it was possible to differentiate the untreated wood from the modified ones, whereas by combining the mechanical properties and colour parameters, it was possible to differentiate between the three groups of studied samples. This demonstrates there is a degree of correlation between the test methods, adding further confidence to the postulation of using colour to ensure quality control of ThermoWood®
    • …
    corecore