900 research outputs found

    Heidegger’s Underdeveloped Conception of the Undistinguishedness (Indifferenz) of Everyday Human Existence

    Get PDF
    This chapter provides an interpretation of the early Heidegger’s underdeveloped conception of the undistinguishedness of everyday human existence in Being and Time. After explaining why certain translation choices of some key terms in this text are interpretively and philosophically important, I first provide a concise argument for why the social constitution interpretation of the relation between ownedness and unownedness makes better overall sense of Heidegger’s ambivalent attitude toward the social constitution of the human being than the standard existentialist interpretation of this relation. I then proceed to the heart of this chapter, which develops his inchoate conception of the undistinguishedness of everydayness by arguing that it specifies the third distinctive mode of concrete human existence in addition to ownedness and unownedness. Accordingly, I show how unownedness is actually a generic phenomenon with two distinct species, namely, undistinguishedness and disownedness, which are at once closely related to, but also differ in significant respects from, each other. Consequently, instead of taking for granted a one-dimensional and mutually exclusive opposition between ‘authenticity’ and ‘inauthenticity’, I argue that we should adopt a two-dimensional and more nuanced understanding of the relations among undistinguishedness, disownedness, and ownedness that intersects with Heidegger’s underappreciated distinction between genuineness and ungenuineness. After raising and replying to some objections to this interpretation of undistinguishedness, I conclude this chapter by briefly sketching three of its philosophical consequences and pointing out its potential as an important resource for contemporary social theories

    Regulators of G protein signaling (RGS proteins): Novel central nervous system drug targets

    Full text link
    Many drugs of abuse signal through receptors that couple to G proteins (GPCRs), so the factors that control GPCR signaling are likely to be important to the understanding of drug abuse. Contributions by the recently identified protein family, regulators of G protein signaling (RGS) to the control of GPCR function are just beginning to be understood. RGS proteins can accelerate the deactivation of G proteins by 1000-fold and in cell systems they profoundly inhibit signaling by many receptors, including mu-opioid receptors. Coupled with the known dynamic regulation of RGS protein expression and function, they are of obvious interest in understanding tolerance and dependence mechanisms. Furthermore, drugs that could inhibit their activity could be useful in preventing the development of or in treating drug dependence.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72565/1/j.1399-3011.2002.21064.x.pd

    Tensor Correlations Measured in 3He(e,e'pp)n

    Full text link
    We have measured the 3He(e,e'pp)n reaction at an incident energy of 4.7 GeV over a wide kinematic range. We identified spectator correlated pp and pn nucleon pairs using kinematic cuts and measured their relative and total momentum distributions. This is the first measurement of the ratio of pp to pn pairs as a function of pair total momentum, ptotp_{tot}. For pair relative momenta between 0.3 and 0.5 GeV/c, the ratio is very small at low ptotp_{tot} and rises to approximately 0.5 at large ptotp_{tot}. This shows the dominance of tensor over central correlations at this relative momentum.Comment: 4 pages, 4 figures, submitted to PR

    Measurement of the nuclear multiplicity ratio for Ks0K^0_s hadronization at CLAS

    Full text link
    The influence of cold nuclear matter on lepto-production of hadrons in semi-inclusive deep inelastic scattering is measured using the CLAS detector in Hall B at Jefferson Lab and a 5.014 GeV electron beam. We report the Ks0K_s^0 multiplicity ratios for targets of C, Fe, and Pb relative to deuterium as a function of the fractional virtual photon energy zz transferred to the Ks0K_s^0 and the transverse momentum squared pT2p_{T}^2 of the Ks0K_s^0. We find that the multiplicity ratios for Ks0K^0_s are reduced in the nuclear medium at high zz and low pT2p_{T}^2, with a trend for the Ks0K^0_s transverse momentum to be broadened in the nucleus for large pT2p_{T}^2.Comment: Submitted to Phys. Lett.

    Coherent Photoproduction of pi^+ from 3^He

    Full text link
    We have measured the differential cross section for the Îł\gamma3^3He→π+t\rightarrow \pi^+ t reaction. This reaction was studied using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Real photons produced with the Hall-B bremsstrahlung tagging system in the energy range from 0.50 to 1.55 GeV were incident on a cryogenic liquid 3^3He target. The differential cross sections for the Îł\gamma3^3He→π+t\rightarrow \pi^+ t reaction were measured as a function of photon-beam energy and pion-scattering angle. Theoretical predictions to date cannot explain the large cross sections except at backward angles, showing that additional components must be added to the model.Comment: 11 pages, 16 figure

    Near-threshold Photoproduction of Phi Mesons from Deuterium

    Full text link
    We report the first measurement of the differential cross section on ϕ\phi-meson photoproduction from deuterium near the production threshold for a proton using the CLAS detector and a tagged-photon beam in Hall B at Jefferson Lab. The measurement was carried out by a triple coincidence detection of a proton, K+K^+ and K−K^- near the theoretical production threshold of 1.57 GeV. The extracted differential cross sections dσdt\frac{d\sigma}{dt} for the initial photon energy from 1.65-1.75 GeV are consistent with predictions based on a quasifree mechanism. This experiment establishes a baseline for a future experimental search for an exotic ϕ\phi-N bound state from heavier nuclear targets utilizing subthreshold/near-threshold production of ϕ\phi mesons

    Absorption of the ω\omega and ϕ\phi Mesons in Nuclei

    Full text link
    Due to their long lifetimes, the ω\omega and ϕ\phi mesons are the ideal candidates for the study of possible modifications of the in-medium meson-nucleon interaction through their absorption inside the nucleus. During the E01-112 experiment at the Thomas Jefferson National Accelerator Facility, the mesons were photoproduced from 2^{2}H, C, Ti, Fe, and Pb targets. This paper reports the first measurement of the ratio of nuclear transparencies for the e+e−e^{+}e^{-} channel. The ratios indicate larger in-medium widths compared with what have been reported in other reaction channels.Comment: 6 pages, 4 figure
    • 

    corecore