99 research outputs found

    Informing research priorities for immature sea turtles through expert elicitation

    Get PDF
    This is the final version. Available from Inter Research via the DOI in this record. Although sea turtles have received substantial focus worldwide, research on the immature life stages is still relatively limited. The latter is of particular importance, given that a large proportion of sea turtle populations comprises immature individuals. We set out to identify knowledge gaps and identify the main barriers hindering research in this field. We analyzed the perceptions of sea turtle experts through an online survey which gathered their opinions on the current state of affairs on immature sea turtle research, including species and regions in need of further study, priority research questions, and barriers that have interfered with the advancement of research. Our gap analysis indicates that studies on immature leatherback Dermochelys coriacea and hawksbill Eretmochelys imbricata turtles are lacking, as are studies on all species based in the Indian, South Pacific, and South Atlantic Oceans. Experts also perceived that studies in population ecology, namely on survivorship and demography, and habitat use/behavior, are needed to advance the state of knowledge on immature sea turtles. Our survey findings indicate the need for more interdisciplinary research, collaborative efforts (e.g. data-sharing, joint field activities), and improved communication among researchers, funding bodies, stakeholders, and decision-makers

    Organization of the cpe Locus in CPE-Positive Clostridium perfringens Type C and D Isolates

    Get PDF
    Clostridium perfringens enterotoxin (encoded by the cpe gene) contributes to several important human, and possibly veterinary, enteric diseases. The current study investigated whether cpe locus organization in type C or D isolates resembles one of the three (one chromosomal and two plasmid-borne) cpe loci commonly found amongst type A isolates. Multiplex PCR assays capable of detecting sequences in those type A cpe loci failed to amplify products from cpe-positive type C and D isolates, indicating these isolates possess different cpe locus arrangements. Therefore, restriction fragments containing the cpe gene were cloned and sequenced from two type C isolates and one type D isolate. The obtained cpe locus sequences were then used to construct an overlapping PCR assay to assess cpe locus diversity amongst other cpe-positive type C and D isolates. All seven surveyed cpe-positive type C isolates had a plasmid-borne cpe locus partially resembling the cpe locus of type A isolates carrying a chromosomal cpe gene. In contrast, all eight type D isolates shared the same plasmid-borne cpe locus, which differed substantially from the cpe locus present in other C. perfringens by containing two copies of an ORF with 67% identity to a transposase gene (COG4644) found in Tn1546, but not previously associated with the cpe gene. These results identify greater diversity amongst cpe locus organization than previously appreciated, providing new insights into cpe locus evolution. Finally, evidence for cpe gene mobilization was found for both type C and D isolates, which could explain their cpe plasmid diversity

    Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques

    Get PDF
    race metals (Cd, Cr, Cu, Ni and Pb) concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria). The degree of contamination was assessed using the individual contamination factors (ICF) and global contamination factor (GCF). Multivariate statistical approaches including principal component analysis (PCA), cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources

    Antenatal glucocorticoid treatment induces adaptations in adult midbrain dopamine neurons, which underpin sexually dimorphic behavioral resilience

    Get PDF
    We demonstrated previously that antenatal glucocorticoid treatment (AGT, gestational days 16-19) altered the size and organization of the adult rat midbrain dopaminergic (DA) populations. Here we investigated the consequences of these AGT-induced cytoarchitectural disturbances on indices of DA function in adult rats. We show that in adulthood, enrichment of striatal DA fiber density paralleled AGT-induced increases in the numbers of midbrain DA neurons, which retained normal basal electrophysiological properties. This was co-incident with changes in (i) striatal D2-type receptor levels (increased, both sexes); (ii) D1-type receptor levels (males decreased; females increased); (iii) DA transporter levels (males increased; females decreased) in striatal regions; and (iv) amphetamine-induced mesolimbic DA release (males increased; females decreased). However, despite these profound, sexually dimorphic changes in markers of DA neurotransmission, in-utero glucocorticoid overexposure had a modest or no effect on a range of conditioned and unconditioned appetitive behaviors known to depend on mesolimbic DA activity. These findings provide empirical evidence for enduring AGT-induced adaptive mechanisms within the midbrain DA circuitry, which preserve some, but not all, functions, thereby casting further light on the vulnerability of these systems to environmental perturbations. Furthermore, they demonstrate these effects are achieved by different, often opponent, adaptive mechanisms in males and females, with translational implications for sex biases commonly found in midbrain DA-associated disorders

    Connexin 43 mediated gap junctional communication enhances breast tumor cell diapedesis in culture

    Get PDF
    INTRODUCTION: Metastasis involves the emigration of tumor cells through the vascular endothelium, a process also known as diapedesis. The molecular mechanisms regulating tumor cell diapedesis are poorly understood, but may involve heterocellular gap junctional intercellular communication (GJIC) between tumor cells and endothelial cells. METHOD: To test this hypothesis we expressed connexin 43 (Cx43) in GJIC-deficient mammary epithelial tumor cells (HBL100) and examined their ability to form gap junctions, establish heterocellular GJIC and migrate through monolayers of human microvascular endothelial cells (HMVEC) grown on matrigel-coated coverslips. RESULTS: HBL100 cells expressing Cx43 formed functional heterocellular gap junctions with HMVEC monolayers within 30 minutes. In addition, immunocytochemistry revealed Cx43 localized to contact sites between Cx43 expressing tumor cells and endothelial cells. Quantitative analysis of diapedesis revealed a two-fold increase in diapedesis of Cx43 expressing cells compared to empty vector control cells. The expression of a functionally inactive Cx43 chimeric protein in HBL100 cells failed to increase migration efficiency, suggesting that the observed up-regulation of diapedesis in Cx43 expressing cells required heterocellular GJIC. This finding is further supported by the observation that blocking homocellular and heterocellular GJIC with carbenoxolone in co-cultures also reduced diapedesis of Cx43 expressing HBL100 tumor cells. CONCLUSION: Collectively, our results suggest that heterocellular GJIC between breast tumor cells and endothelial cells may be an important regulatory step during metastasis

    Vascular permeability, vascular hyperpermeability and angiogenesis

    Get PDF
    The vascular system has the critical function of supplying tissues with nutrients and clearing waste products. To accomplish these goals, the vasculature must be sufficiently permeable to allow the free, bidirectional passage of small molecules and gases and, to a lesser extent, of plasma proteins. Physiologists and many vascular biologists differ as to the definition of vascular permeability and the proper methodology for its measurement. We review these conflicting views, finding that both provide useful but complementary information. Vascular permeability by any measure is dramatically increased in acute and chronic inflammation, cancer, and wound healing. This hyperpermeability is mediated by acute or chronic exposure to vascular permeabilizing agents, particularly vascular permeability factor/vascular endothelial growth factor (VPF/VEGF, VEGF-A). We demonstrate that three distinctly different types of vascular permeability can be distinguished, based on the different types of microvessels involved, the composition of the extravasate, and the anatomic pathways by which molecules of different size cross-vascular endothelium. These are the basal vascular permeability (BVP) of normal tissues, the acute vascular hyperpermeability (AVH) that occurs in response to a single, brief exposure to VEGF-A or other vascular permeabilizing agents, and the chronic vascular hyperpermeability (CVH) that characterizes pathological angiogenesis. Finally, we list the numerous (at least 25) gene products that different authors have found to affect vascular permeability in variously engineered mice and classify them with respect to their participation, as far as possible, in BVP, AVH and CVH. Further work will be required to elucidate the signaling pathways by which each of these molecules, and others likely to be discovered, mediate the different types of vascular permeability

    The restorative role of annexin A1 at the blood–brain barrier

    Get PDF
    Annexin A1 is a potent anti-inflammatory molecule that has been extensively studied in the peripheral immune system, but has not as yet been exploited as a therapeutic target/agent. In the last decade, we have undertaken the study of this molecule in the central nervous system (CNS), focusing particularly on the primary interface between the peripheral body and CNS: the blood–brain barrier. In this review, we provide an overview of the role of this molecule in the brain, with a particular emphasis on its functions in the endothelium of the blood–brain barrier, and the protective actions the molecule may exert in neuroinflammatory, neurovascular and metabolic disease. We focus on the possible new therapeutic avenues opened up by an increased understanding of the role of annexin A1 in the CNS vasculature, and its potential for repairing blood–brain barrier damage in disease and aging
    corecore