7,805 research outputs found
Parallel Mapper
The construction of Mapper has emerged in the last decade as a powerful and
effective topological data analysis tool that approximates and generalizes
other topological summaries, such as the Reeb graph, the contour tree, split,
and joint trees. In this paper, we study the parallel analysis of the
construction of Mapper. We give a provably correct parallel algorithm to
execute Mapper on multiple processors and discuss the performance results that
compare our approach to a reference sequential Mapper implementation. We report
the performance experiments that demonstrate the efficiency of our method
Large-scale exact diagonalizations reveal low-momentum scales of nuclei
Ab initio methods aim to solve the nuclear many-body problem with controlled
approximations. Virtually exact numerical solutions for realistic interactions
can only be obtained for certain special cases such as few-nucleon systems.
Here we extend the reach of exact diagonalization methods to handle model
spaces with dimension exceeding on a single compute node. This allows
us to perform no-core shell model (NCSM) calculations for 6Li in model spaces
up to and to reveal the 4He+d halo structure of this
nucleus. Still, the use of a finite harmonic-oscillator basis implies
truncations in both infrared (IR) and ultraviolet (UV) length scales. These
truncations impose finite-size corrections on observables computed in this
basis. We perform IR extrapolations of energies and radii computed in the NCSM
and with the coupled-cluster method at several fixed UV cutoffs. It is shown
that this strategy enables information gain also from data that is not fully UV
converged. IR extrapolations improve the accuracy of relevant bound-state
observables for a range of UV cutoffs, thus making them profitable tools. We
relate the momentum scale that governs the exponential IR convergence to the
threshold energy for the first open decay channel. Using large-scale NCSM
calculations we numerically verify this small-momentum scale of finite nuclei.Comment: Minor revisions.Accepted for publication in Physical Review
Morphology and Dynamics of the Low Solar Chromosphere
The Interferometric Bidimensional Spectrometer (IBIS) installed at the Dunn
Solar Telescope of the NSO/SP is used to investigate the morphology and
dynamics of the lower chromosphere and the virtually non-magnetic fluctosphere
below. The study addresses in particular the structure of magnetic elements
that extend into these layers. We choose different quiet Sun regions in and
outside coronal holes. In inter-network regions with no significant magnetic
flux contributions above the detection limit of IBIS, we find intensity
structures with the characteristics of a shock wave pattern. The magnetic flux
elements in the network are long lived and seem to resemble the spatially
extended counterparts to the underlying photospheric magnetic elements. We
suggest a modification to common methods to derive the line-of-sight magnetic
field strength and explain some of the difficulties in deriving the magnetic
field vector from observations of the fluctosphere.Comment: accepted by ApJ, 16 pages, 8 figure
The formation of IRIS diagnostics I. A quintessential model atom of Mg II and general formation properties of the Mg II h&k lines
NASA's Interface Region Imaging Spectrograph (IRIS) space mission will study
how the solar atmosphere is energized. IRIS contains an imaging spectrograph
that covers the Mg II h&k lines as well as a slit-jaw imager centered at Mg II
k. Understanding the observations will require forward modeling of Mg II h&k
line formation from 3D radiation-MHD models. This paper is the first in a
series where we undertake this forward modeling. We discuss the atomic physics
pertinent to h&k line formation, present a quintessential model atom that can
be used in radiative transfer computations and discuss the effect of partial
redistribution (PRD) and 3D radiative transfer on the emergent line profiles.
We conclude that Mg II h&k can be modeled accurately with a 4-level plus
continuum Mg II model atom. Ideally radiative transfer computations should be
done in 3D including PRD effects. In practice this is currently not possible. A
reasonable compromise is to use 1D PRD computations to model the line profile
up to and including the central emission peaks, and use 3D transfer assuming
complete redistribution to model the central depression.Comment: 13 pages, 13 figures, accepted for Ap
Correlation studies of fission fragment neutron multiplicities
We calculate neutron multiplicities from fission fragments with specified
mass numbers for events having a specified total fragment kinetic energy. The
shape evolution from the initial compound nucleus to the scission
configurations is obtained with the Metropolis walk method on the
five-dimensional potential-energy landscape, calculated with the
macroscopic-microscopic method for the three-quadratic-surface shape family.
Shape-dependent microscopic level densities are used to guide the random walk,
to partition the intrinsic excitation energy between the two proto-fragments at
scission, and to determine the spectrum of the neutrons evaporated from the
fragments. The contributions to the total excitation energy of the resulting
fragments from statistical excitation and shape distortion at scission is
studied. Good agreement is obtained with available experimental data on neutron
multiplicities in correlation with fission fragments from U(n,f). At higher neutron energies a superlong fission mode appears which
affects the dependence of the observables on the total fragment kinetic energy.Comment: 12 pages, 10 figure
The formation of IRIS diagnostics II. The formation of the Mg II h&k lines in the solar atmosphere
NASA's Interface Region Imaging Spectrograph (IRIS) small explorer mission
will study how the solar atmosphere is energized. IRIS contains an imaging
spectrograph that covers the Mg II h&k lines as well as a slit-jaw imager
centered at Mg II k. Understanding the observations requires forward modeling
of Mg II h&k line formation from 3D radiation-MHD models.
We compute the vertically emergent h&k intensity from a snapshot of a dynamic
3D radiation-MHD model of the solar atmosphere, and investigate which
diagnostic information about the atmosphere is contained in the synthetic line
profiles. We find that the Doppler shift of the central line depression
correlates strongly with the vertical velocity at optical depth unity, which is
typically located less than 200 km below the transition region (TR). By
combining the Doppler shifts of the h and the k line we can retrieve the sign
of the velocity gradient just below the TR. The intensity in the central line
depression is anticorrelated with the formation height, especially in subfields
of a few square Mm. This intensity could thus be used to measure the spatial
variation of the height of the transition region. The intensity in the
line-core emission peaks correlates with the temperature at its formation
height, especially for strong emission peaks. The peaks can thus be exploited
as a temperature diagnostic. The wavelength difference between the blue and red
peaks provides a diagnostic of the velocity gradients in the upper
chromosphere. The intensity ratio of the blue and red peaks correlates strongly
with the average velocity in the upper chromosphere. We conclude that the Mg II
h&k lines are excellent probes of the very upper chromosphere just below the
transition region, a height regime that is impossible to probe with other
spectral lines.Comment: 15 pages, 12 figures, accepted for ApJ, astro-ph abstract shortened
to confirm to submission requirement
Modeling of Covalent Bonding in Solids by Inversion of Cohesive Energy Curves
We provide a systematic test of empirical theories of covalent bonding in
solids using an exact procedure to invert ab initio cohesive energy curves. By
considering multiple structures of the same material, it is possible for the
first time to test competing angular functions, expose inconsistencies in the
basic assumption of a cluster expansion, and extract general features of
covalent bonding. We test our methods on silicon, and provide the direct
evidence that the Tersoff-type bond order formalism correctly describes
coordination dependence. For bond-bending forces, we obtain skewed angular
functions that favor small angles, unlike existing models. As a
proof-of-principle demonstration, we derive a Si interatomic potential which
exhibits comparable accuracy to existing models.Comment: 4 pages revtex (twocolumn, psfig), 3 figures. Title and some wording
(but no content) changed since original submission on 24 April 199
- …