9,330 research outputs found

    Three-dimensional non-LTE radiative transfer computation of the Ca 8542 infrared line from a radiation-MHD simulation

    Full text link
    Interpretation of imagery of the solar chromosphere in the widely used \CaIIIR infrared line is hampered by its complex, three-dimensional and non-LTE formation. Forward modelling is required to aid understanding. We use a 3D non-LTE radiative transfer code to compute synthetic \CaIIIR images from a radiation-MHD simulation of the solar atmosphere spanning from the convection zone to the corona. We compare the simulation with observations obtained with the CRISP filter at the Swedish 1--m Solar Telescope. We find that the simulation reproduces dark patches in the blue line wing caused by Doppler shifts, brightenings in the line core caused by upward-propagating shocks and thin dark elongated structures in the line core that form the interface between upward and downward gas motion in the chromosphere. The synthetic line core is narrower than the observed one, indicating that the sun exhibits both more vigorous large-scale dynamics as well as small scale motions that are not resolved within the simulation, presumably owing to a lack of spatial resolution.Comment: accepted as ApJ lette

    Non-equilibrium hydrogen ionization in 2D simulations of the solar atmosphere

    Full text link
    The ionization of hydrogen in the solar chromosphere and transition region does not obey LTE or instantaneous statistical equilibrium because the timescale is long compared with important hydrodynamical timescales, especially of magneto-acoustic shocks. We implement an algorithm to compute non-equilibrium hydrogen ionization and its coupling into the MHD equations within an existing radiation MHD code, and perform a two-dimensional simulation of the solar atmosphere from the convection zone to the corona. Analysis of the simulation results and comparison to a companion simulation assuming LTE shows that: a) Non-equilibrium computation delivers much smaller variations of the chromospheric hydrogen ionization than for LTE. The ionization is smaller within shocks but subsequently remains high in the cool intershock phases. As a result, the chromospheric temperature variations are much larger than for LTE because in non-equilibrium, hydrogen ionization is a less effective internal energy buffer. The actual shock temperatures are therefore higher and the intershock temperatures lower. b) The chromospheric populations of the hydrogen n = 2 level, which governs the opacity of Halpha, are coupled to the ion populations. They are set by the high temperature in shocks and subsequently remain high in the cool intershock phases. c) The temperature structure and the hydrogen level populations differ much between the chromosphere above photospheric magnetic elements and above quiet internetwork. d) The hydrogen n = 2 population and column density are persistently high in dynamic fibrils, suggesting that these obtain their visibility from being optically thick in Halpha also at low temperature.Comment: 10 pages, 4 figure

    Modeling of Covalent Bonding in Solids by Inversion of Cohesive Energy Curves

    Full text link
    We provide a systematic test of empirical theories of covalent bonding in solids using an exact procedure to invert ab initio cohesive energy curves. By considering multiple structures of the same material, it is possible for the first time to test competing angular functions, expose inconsistencies in the basic assumption of a cluster expansion, and extract general features of covalent bonding. We test our methods on silicon, and provide the direct evidence that the Tersoff-type bond order formalism correctly describes coordination dependence. For bond-bending forces, we obtain skewed angular functions that favor small angles, unlike existing models. As a proof-of-principle demonstration, we derive a Si interatomic potential which exhibits comparable accuracy to existing models.Comment: 4 pages revtex (twocolumn, psfig), 3 figures. Title and some wording (but no content) changed since original submission on 24 April 199

    Branching, Capping, and Severing in Dynamic Actin Structures

    Full text link
    Branched actin networks at the leading edge of a crawling cell evolve via protein-regulated processes such as polymerization, depolymerization, capping, branching, and severing. A formulation of these processes is presented and analyzed to study steady-state network morphology. In bulk, we identify several scaling regimes in severing and branching protein concentrations and find that the coupling between severing and branching is optimally exploited for conditions {\it in vivo}. Near the leading edge, we find qualitative agreement with the {\it in vivo} morphology.Comment: 4 pages, 2 figure

    The formation of IRIS diagnostics I. A quintessential model atom of Mg II and general formation properties of the Mg II h&k lines

    Full text link
    NASA's Interface Region Imaging Spectrograph (IRIS) space mission will study how the solar atmosphere is energized. IRIS contains an imaging spectrograph that covers the Mg II h&k lines as well as a slit-jaw imager centered at Mg II k. Understanding the observations will require forward modeling of Mg II h&k line formation from 3D radiation-MHD models. This paper is the first in a series where we undertake this forward modeling. We discuss the atomic physics pertinent to h&k line formation, present a quintessential model atom that can be used in radiative transfer computations and discuss the effect of partial redistribution (PRD) and 3D radiative transfer on the emergent line profiles. We conclude that Mg II h&k can be modeled accurately with a 4-level plus continuum Mg II model atom. Ideally radiative transfer computations should be done in 3D including PRD effects. In practice this is currently not possible. A reasonable compromise is to use 1D PRD computations to model the line profile up to and including the central emission peaks, and use 3D transfer assuming complete redistribution to model the central depression.Comment: 13 pages, 13 figures, accepted for Ap

    Structural, electronic, and chemical properties of nanoporous carbon

    Get PDF
    Nanoporous carbon (NPC) exhibits unexplained chemical properties, making it distinct from other graphenelike materials, such as graphite, fullerenes, or nanotubes. In this Letter, we analyze the properties of NPC in terms of its structural motifs, which are derived from defects in distorted graphene sheets. Our density-functional theory calculations show that these motifs can be present in high concentration (up to 1%). Some of them induce localized levels close to the Fermi level, therefore leading to local charging and controlling the material’s chemical function, for example, as a catalyst

    The formation of IRIS diagnostics II. The formation of the Mg II h&k lines in the solar atmosphere

    Full text link
    NASA's Interface Region Imaging Spectrograph (IRIS) small explorer mission will study how the solar atmosphere is energized. IRIS contains an imaging spectrograph that covers the Mg II h&k lines as well as a slit-jaw imager centered at Mg II k. Understanding the observations requires forward modeling of Mg II h&k line formation from 3D radiation-MHD models. We compute the vertically emergent h&k intensity from a snapshot of a dynamic 3D radiation-MHD model of the solar atmosphere, and investigate which diagnostic information about the atmosphere is contained in the synthetic line profiles. We find that the Doppler shift of the central line depression correlates strongly with the vertical velocity at optical depth unity, which is typically located less than 200 km below the transition region (TR). By combining the Doppler shifts of the h and the k line we can retrieve the sign of the velocity gradient just below the TR. The intensity in the central line depression is anticorrelated with the formation height, especially in subfields of a few square Mm. This intensity could thus be used to measure the spatial variation of the height of the transition region. The intensity in the line-core emission peaks correlates with the temperature at its formation height, especially for strong emission peaks. The peaks can thus be exploited as a temperature diagnostic. The wavelength difference between the blue and red peaks provides a diagnostic of the velocity gradients in the upper chromosphere. The intensity ratio of the blue and red peaks correlates strongly with the average velocity in the upper chromosphere. We conclude that the Mg II h&k lines are excellent probes of the very upper chromosphere just below the transition region, a height regime that is impossible to probe with other spectral lines.Comment: 15 pages, 12 figures, accepted for ApJ, astro-ph abstract shortened to confirm to submission requirement
    corecore