9,330 research outputs found
Three-dimensional non-LTE radiative transfer computation of the Ca 8542 infrared line from a radiation-MHD simulation
Interpretation of imagery of the solar chromosphere in the widely used
\CaIIIR infrared line is hampered by its complex, three-dimensional and non-LTE
formation. Forward modelling is required to aid understanding. We use a 3D
non-LTE radiative transfer code to compute synthetic \CaIIIR images from a
radiation-MHD simulation of the solar atmosphere spanning from the convection
zone to the corona. We compare the simulation with observations obtained with
the CRISP filter at the Swedish 1--m Solar Telescope. We find that the
simulation reproduces dark patches in the blue line wing caused by Doppler
shifts, brightenings in the line core caused by upward-propagating shocks and
thin dark elongated structures in the line core that form the interface between
upward and downward gas motion in the chromosphere. The synthetic line core is
narrower than the observed one, indicating that the sun exhibits both more
vigorous large-scale dynamics as well as small scale motions that are not
resolved within the simulation, presumably owing to a lack of spatial
resolution.Comment: accepted as ApJ lette
Non-equilibrium hydrogen ionization in 2D simulations of the solar atmosphere
The ionization of hydrogen in the solar chromosphere and transition region
does not obey LTE or instantaneous statistical equilibrium because the
timescale is long compared with important hydrodynamical timescales, especially
of magneto-acoustic shocks. We implement an algorithm to compute
non-equilibrium hydrogen ionization and its coupling into the MHD equations
within an existing radiation MHD code, and perform a two-dimensional simulation
of the solar atmosphere from the convection zone to the corona. Analysis of the
simulation results and comparison to a companion simulation assuming LTE shows
that: a) Non-equilibrium computation delivers much smaller variations of the
chromospheric hydrogen ionization than for LTE. The ionization is smaller
within shocks but subsequently remains high in the cool intershock phases. As a
result, the chromospheric temperature variations are much larger than for LTE
because in non-equilibrium, hydrogen ionization is a less effective internal
energy buffer. The actual shock temperatures are therefore higher and the
intershock temperatures lower. b) The chromospheric populations of the hydrogen
n = 2 level, which governs the opacity of Halpha, are coupled to the ion
populations. They are set by the high temperature in shocks and subsequently
remain high in the cool intershock phases. c) The temperature structure and the
hydrogen level populations differ much between the chromosphere above
photospheric magnetic elements and above quiet internetwork. d) The hydrogen n
= 2 population and column density are persistently high in dynamic fibrils,
suggesting that these obtain their visibility from being optically thick in
Halpha also at low temperature.Comment: 10 pages, 4 figure
Modeling of Covalent Bonding in Solids by Inversion of Cohesive Energy Curves
We provide a systematic test of empirical theories of covalent bonding in
solids using an exact procedure to invert ab initio cohesive energy curves. By
considering multiple structures of the same material, it is possible for the
first time to test competing angular functions, expose inconsistencies in the
basic assumption of a cluster expansion, and extract general features of
covalent bonding. We test our methods on silicon, and provide the direct
evidence that the Tersoff-type bond order formalism correctly describes
coordination dependence. For bond-bending forces, we obtain skewed angular
functions that favor small angles, unlike existing models. As a
proof-of-principle demonstration, we derive a Si interatomic potential which
exhibits comparable accuracy to existing models.Comment: 4 pages revtex (twocolumn, psfig), 3 figures. Title and some wording
(but no content) changed since original submission on 24 April 199
Branching, Capping, and Severing in Dynamic Actin Structures
Branched actin networks at the leading edge of a crawling cell evolve via
protein-regulated processes such as polymerization, depolymerization, capping,
branching, and severing. A formulation of these processes is presented and
analyzed to study steady-state network morphology. In bulk, we identify several
scaling regimes in severing and branching protein concentrations and find that
the coupling between severing and branching is optimally exploited for
conditions {\it in vivo}. Near the leading edge, we find qualitative agreement
with the {\it in vivo} morphology.Comment: 4 pages, 2 figure
The formation of IRIS diagnostics I. A quintessential model atom of Mg II and general formation properties of the Mg II h&k lines
NASA's Interface Region Imaging Spectrograph (IRIS) space mission will study
how the solar atmosphere is energized. IRIS contains an imaging spectrograph
that covers the Mg II h&k lines as well as a slit-jaw imager centered at Mg II
k. Understanding the observations will require forward modeling of Mg II h&k
line formation from 3D radiation-MHD models. This paper is the first in a
series where we undertake this forward modeling. We discuss the atomic physics
pertinent to h&k line formation, present a quintessential model atom that can
be used in radiative transfer computations and discuss the effect of partial
redistribution (PRD) and 3D radiative transfer on the emergent line profiles.
We conclude that Mg II h&k can be modeled accurately with a 4-level plus
continuum Mg II model atom. Ideally radiative transfer computations should be
done in 3D including PRD effects. In practice this is currently not possible. A
reasonable compromise is to use 1D PRD computations to model the line profile
up to and including the central emission peaks, and use 3D transfer assuming
complete redistribution to model the central depression.Comment: 13 pages, 13 figures, accepted for Ap
Structural, electronic, and chemical properties of nanoporous carbon
Nanoporous carbon (NPC) exhibits unexplained chemical properties, making it distinct from other graphenelike materials, such as graphite, fullerenes, or nanotubes. In this Letter, we analyze the properties of NPC in terms of its structural motifs, which are derived from defects in distorted graphene sheets. Our density-functional theory calculations show that these motifs can be present in high concentration (up to 1%). Some of them induce localized levels close to the Fermi level, therefore leading to local charging and controlling the material’s chemical function, for example, as a catalyst
The formation of IRIS diagnostics II. The formation of the Mg II h&k lines in the solar atmosphere
NASA's Interface Region Imaging Spectrograph (IRIS) small explorer mission
will study how the solar atmosphere is energized. IRIS contains an imaging
spectrograph that covers the Mg II h&k lines as well as a slit-jaw imager
centered at Mg II k. Understanding the observations requires forward modeling
of Mg II h&k line formation from 3D radiation-MHD models.
We compute the vertically emergent h&k intensity from a snapshot of a dynamic
3D radiation-MHD model of the solar atmosphere, and investigate which
diagnostic information about the atmosphere is contained in the synthetic line
profiles. We find that the Doppler shift of the central line depression
correlates strongly with the vertical velocity at optical depth unity, which is
typically located less than 200 km below the transition region (TR). By
combining the Doppler shifts of the h and the k line we can retrieve the sign
of the velocity gradient just below the TR. The intensity in the central line
depression is anticorrelated with the formation height, especially in subfields
of a few square Mm. This intensity could thus be used to measure the spatial
variation of the height of the transition region. The intensity in the
line-core emission peaks correlates with the temperature at its formation
height, especially for strong emission peaks. The peaks can thus be exploited
as a temperature diagnostic. The wavelength difference between the blue and red
peaks provides a diagnostic of the velocity gradients in the upper
chromosphere. The intensity ratio of the blue and red peaks correlates strongly
with the average velocity in the upper chromosphere. We conclude that the Mg II
h&k lines are excellent probes of the very upper chromosphere just below the
transition region, a height regime that is impossible to probe with other
spectral lines.Comment: 15 pages, 12 figures, accepted for ApJ, astro-ph abstract shortened
to confirm to submission requirement
- …