242 research outputs found

    White sorghum grain (Funk\u27s G766W) and elevator-run red sorghum grain compared for fattening cattle

    Get PDF
    An new white variety of sorghum grain (Funk\u27s G766W) has been reported to be higher in digestible dry matter and protein than elevator-run, rod sorghum grain. A 120-day field trial was conducted on the George and Vernon Miller farm near Great Bend to compare the two sorghum grain types under feed-lot conditions

    Noncommutative Quantum Mechanics and Seiberg-Witten Map

    Full text link
    In order to overcome ambiguity problem on identification of mathematical objects in noncommutative theory with physical observables, quantum mechanical system coupled to the NC U(1) gauge field in the noncommutative space is reformulated by making use of the unitarized Seiberg-Witten map, and applied to the Aharonov-Bohm and Hall effects of the NC U(1) gauge field. Retaining terms only up to linear order in the NC parameter \theta, we find that the AB topological phase and the Hall conductivity have both the same formulas as those of the ordinary commutative space with no \theta-dependence.Comment: 7 pages, no figures, uses revtex4; 8 pages, conclusion changed, Appendix adde

    Collective modes of color-flavor locked phase of dense QCD at finite temperature

    Get PDF
    A detailed analysis of collective modes that couple to either vector or axial color currents in color-flavor locked phase of color superconducting dense quark matter at finite temperature is presented. Among the realm of collective modes, including the plasmons and the Nambu-Goldstone bosons, we also reveal the gapless Carlson-Goldman modes, resembling the scalar Nambu-Golstone bosons. These latter exist only in a close vicinity of the critical line. Their presence does not eliminate the Meissner effect, proving that the system remains in the color broken phase. The finite temperature properties of the plasmons and the Nambu-Goldstone bosons are also studied. In addition to the ordinary plasmon, we also reveal a "light" plasmon which has a narrow width and whose mass is of the order of the superconducting gap.Comment: 28 pages, 8 figures. REVTeX. Two references added and minor modifications introduced (see p. 5 and pp. 13,14). To appear in Nucl. Phys.

    Effective action approach and Carlson-Goldman mode in d-wave superconductors

    Full text link
    We theoretically investigate the Carlson-Goldman (CG) mode in two-dimensional clean d-wave superconductors using the effective ``phase only'' action formalism. In conventional s-wave superconductors, it is known that the CG mode is observed as a peak in the structure factor of the pair susceptibility S(Ω,K)S(\Omega, \mathbf{K}) only just below the transition temperature T_c and only in dirty systems. On the other hand, our analytical results support the statement by Y.Ohashi and S.Takada, Phys.Rev.B {\bf 62}, 5971 (2000) that in d-wave superconductors the CG mode can exist in clean systems down to the much lower temperatures, T≈0.1TcT \approx 0.1 T_c. We also consider the manifestations of the CG mode in the density-density and current-current correlators and discuss the gauge independence of the obtained results.Comment: 23 pages, RevTeX4, 12 EPS figures; final version to appear in PR

    Method to compute the stress-energy tensor for the massless spin 1/2 field in a general static spherically symmetric spacetime

    Get PDF
    A method for computing the stress-energy tensor for the quantized, massless, spin 1/2 field in a general static spherically symmetric spacetime is presented. The field can be in a zero temperature state or a non-zero temperature thermal state. An expression for the full renormalized stress-energy tensor is derived. It consists of a sum of two tensors both of which are conserved. One tensor is written in terms of the modes of the quantized field and has zero trace. In most cases it must be computed numerically. The other tensor does not explicitly depend on the modes and has a trace equal to the trace anomaly. It can be used as an analytic approximation for the stress-energy tensor and is equivalent to other approximations that have been made for the stress-energy tensor of the massless spin 1/2 field in static spherically symmetric spacetimes.Comment: 34 pages, no figure

    Quasi Free 238U (e,e'f)-Cross Section in Macroscopic-Microscopic Approach

    Get PDF
    We present the result of a theoretical study of inclusive quasi free electrofission of 238^{238}U. The off-shell cross sections for the quasi free reaction stage have been calculated within the Plane Wave Impulse Approximation (PWIA), using a Macroscopic -Microscopic description of the proton and neutron single particle momentum distributions. Electron wave function distortion corrections were included using the effective momentum approximation, and the Final State Interaction (FSI) effects were calculated using an optical potential. The fissility for the proton single hole excited states of the residual nucleus 237^{237}Pa was calculated both without and with contributions of the pre-equilibrium emission of the particles. The fissility for 237,238U^{237,238}U residual nuclei was calculated within the compound nucleus model. The (e,eâ€Čf)−(e,e^{\prime}f)-cross sections thus obtained were compared with available experimental data.Comment: 26 pages, 7 figure

    Theory of parity violation in compound nuclear states; one particle aspects

    Full text link
    In this work we formulate the reaction theory of parity violation in compound nuclear states using Feshbach's projection operator formalism. We derive in this framework a complete set of terms that contribute to the longitudinal asymmetry measured in experiments with polarized epithermal neutrons. We also discuss the parity violating spreading width resulting from this formalism. We then use the above formalism to derive expressions which hold in the case when the doorway state approximation is introduced. In applying the theory we limit ourselves in this work to the case when the parity violating potential and the strong interaction are one-body. In this approximation, using as the doorway the giant spin-dipole resonance and employing well known optical potentials and a time-reversal even, parity odd one-body interaction we calculate or estimate the terms we derived. In our calculations we explicitly orthogonalize the continuum and bound wave functions. We find the effects of orthogonalization to be very important. Our conclusion is that the present one-body theory cannot explain the average longitudinal asymmetry found in the recent polarized neutron experiments. We also confirm the discrepancy, first pointed out by Auerbach and Bowman, that emerges, between the calculated average asymmetry and the parity violating spreading width, when distant doorways are used in the theory.Comment: 37 pages, REVTEX, 5 figures not included (Postscript, available from the authors

    Testing spatial noncommutativiy via the Aharonov-Bohm effect

    Get PDF
    The possibility of detecting noncommutative space relics is analyzed using the Aharonov-Bohm effect. We show that, if space is noncommutative, the holonomy receives non-trivial kinematical corrections that will produce a diffraction pattern even when the magnetic flux is quantized. The scattering problem is also formulated, and the differential cross section is calculated. Our results can be extrapolated to high energy physics and the bound Ξ∌[10TeV]−2\theta \sim [ 10 {TeV}]^{-2} is found. If this bound holds, then noncommutative effects could be explored in scattering experiments measuring differential cross sections for small angles. The bound state Aharonov- Bohm effect is also discussed.Comment: 16 pp, Revtex 4, 2 fig, new references added. To appear in PR

    Inflation, cold dark matter, and the central density problem

    Full text link
    A problem with high central densities in dark halos has arisen in the context of LCDM cosmologies with scale-invariant initial power spectra. Although n=1 is often justified by appealing to the inflation scenario, inflationary models with mild deviations from scale-invariance are not uncommon and models with significant running of the spectral index are plausible. Even mild deviations from scale-invariance can be important because halo collapse times and densities depend on the relative amount of small-scale power. We choose several popular models of inflation and work out the ramifications for galaxy central densities. For each model, we calculate its COBE-normalized power spectrum and deduce the implied halo densities using a semi-analytic method calibrated against N-body simulations. We compare our predictions to a sample of dark matter-dominated galaxies using a non-parametric measure of the density. While standard n=1, LCDM halos are overdense by a factor of 6, several of our example inflation+CDM models predict halo densities well within the range preferred by observations. We also show how the presence of massive (0.5 eV) neutrinos may help to alleviate the central density problem even with n=1. We conclude that galaxy central densities may not be as problematic for the CDM paradigm as is sometimes assumed: rather than telling us something about the nature of the dark matter, galaxy rotation curves may be telling us something about inflation and/or neutrinos. An important test of this idea will be an eventual consensus on the value of sigma_8, the rms overdensity on the scale 8 h^-1 Mpc. Our successful models have values of sigma_8 approximately 0.75, which is within the range of recent determinations. Finally, models with n>1 (or sigma_8 > 1) are highly disfavored.Comment: 13 pages, 6 figures. Minor changes made to reflect referee's Comments, error in Eq. (18) corrected, references updated and corrected, conclusions unchanged. Version accepted for publication in Phys. Rev. D, scheduled for 15 August 200
    • 

    corecore