859 research outputs found

    Automated Ecological Assessment of Physical Activity: Advancing Direct Observation.

    Get PDF
    Technological advances provide opportunities for automating direct observations of physical activity, which allow for continuous monitoring and feedback. This pilot study evaluated the initial validity of computer vision algorithms for ecological assessment of physical activity. The sample comprised 6630 seconds per camera (three cameras in total) of video capturing up to nine participants engaged in sitting, standing, walking, and jogging in an open outdoor space while wearing accelerometers. Computer vision algorithms were developed to assess the number and proportion of people in sedentary, light, moderate, and vigorous activity, and group-based metabolic equivalents of tasks (MET)-minutes. Means and standard deviations (SD) of bias/difference values, and intraclass correlation coefficients (ICC) assessed the criterion validity compared to accelerometry separately for each camera. The number and proportion of participants sedentary and in moderate-to-vigorous physical activity (MVPA) had small biases (within 20% of the criterion mean) and the ICCs were excellent (0.82-0.98). Total MET-minutes were slightly underestimated by 9.3-17.1% and the ICCs were good (0.68-0.79). The standard deviations of the bias estimates were moderate-to-large relative to the means. The computer vision algorithms appeared to have acceptable sample-level validity (i.e., across a sample of time intervals) and are promising for automated ecological assessment of activity in open outdoor settings, but further development and testing is needed before such tools can be used in a diverse range of settings

    Perceived neighborhood environmental attributes associated with walking and cycling for transport among adult residents of 17 cities in 12 countries: The IPEN study

    Get PDF
    Introduction: Prevalence of walking and cycling for transport is low and varies greatly across countries. Few studies have examined neighborhood perceptions related to walking and cycling for transport in different countries. Therefore, it is challenging to prioritize appropriate built-environment interventions. Objectives: The aim of this study was to examine the strength and shape of the relationship between adults’ neighborhood perceptions and walking and cycling for transport across diverse environments. Methods: As part of the International Physical activity and Environment Network (IPEN) adult project, self-reported data were taken from 13,745 adults (18–65 years) living in physically and socially diverse neighborhoods in 17 cities across 12 countries. Neighborhood perceptions were measured using the Neighborhood Environment Walkability Scale, and walking and cycling for transport were measured using the International Physical Activity Questionnaire–Long Form. Generalized additive mixed models were used to model walking or cycling for transport during the last seven days with neighborhood perceptions. Interactions by city were explored. Results: Walking-for-transport outcomes were significantly associated with perceived residential density, land use mix–access, street connectivity, aesthetics, and safety. Any cycling for transport was significantly related to perceived land use mix–access, street connectivity, infrastructure, aesthetics, safety, and perceived distance to destinations. Between-city differences existed for some attributes in relation to walking or cycling for transport. Conclusions: Many perceived environmental attributes supported both cycling and walking; however, highly walkable environments may not support cycling for transport. People appear to walk for transport despite safety concerns. These findings can guide the implementation of global health strategies

    Factors Related to the Likelihood of Hiring a Health Advocate

    Get PDF
    This study was designed to explore factors related to the likelihood of hiring a health advocate. Independent variables were selected from the health service use model to capture predisposing, enabling, and illness-level factors. Participants were 889 adults (M age = 50.9 years, SD = 17.9 years, 52% female) recruited from a large cultural park in San Diego, California during the spring and summer of 2008. Participants read a description of a health advocate and completed a brief set of questions on age, gender, confidence in health care, effort maintaining health, self-rated health, and the likelihood of hiring a health advocate. Hierarchical regression analysis revealed that participants age 40-64 , non-Caucasians , participants who exerted more effort maintaining their health , and participants 65 and older who were less satisfied with their social support reported greater likelihood of hiring a health advocate. Findings were similar to those of studies that applied the health service use model to predict use of other health services, such as medical visits. These findings suggest factors that health care organizations offering health advocacy services could consider when targeting potential clients

    A Kerr-microresonator optical clockwork

    Full text link
    Kerr microresonators generate interesting and useful fundamental states of electromagnetic radiation through nonlinear interactions of continuous-wave (CW) laser light. Using photonic-integration techniques, functional devices with low noise, small size, low-power consumption, scalable fabrication, and heterogeneous combinations of photonics and electronics can be realized. Kerr solitons, which stably circulate in a Kerr microresonator, have emerged as a source of coherent, ultrafast pulse trains and ultra-broadband optical-frequency combs. Using the f-2f technique, Kerr combs support carrier-envelope-offset phase stabilization for optical synthesis and metrology. In this paper, we introduce a Kerr-microresonator optical clockwork based on optical-frequency division (OFD), which is a powerful technique to transfer the fractional-frequency stability of an optical clock to a lower frequency electronic clock signal. The clockwork presented here is based on a silicon-nitride (Si3_3N4_4) microresonator that supports an optical-frequency comb composed of soliton pulses at 1 THz repetition rate. By electro-optic phase modulation of the entire Si3_3N4_4 comb, we arbitrarily generate additional CW modes between the Si3_3N4_4 comb modes; operationally, this reduces the pulse train repetition frequency and can be used to implement OFD to the microwave domain. Our experiments characterize the residual frequency noise of this Kerr-microresonator clockwork to one part in 101710^{17}, which opens the possibility of using Kerr combs with high performance optical clocks. In addition, the photonic integration and 1 THz resolution of the Si3_3N4_4 frequency comb makes it appealing for broadband, low-resolution liquid-phase absorption spectroscopy, which we demonstrate with near infrared measurements of water, lipids, and organic solvents

    Reliability and validity of brief psychosocial measures related to dietary behaviors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Measures of psychosocial constructs are required to assess dietary interventions. This study evaluated brief psychosocial scales related to 4 dietary behaviors (consumption of fat, fiber/whole grains, fruits, and vegetables).</p> <p>Methods</p> <p>Two studies were conducted. Study 1 assessed two-week reliability of the psychosocial measures with a sample of 49 college students. Study 2 assessed convergent and discriminant validity of the psychosocial measures with dietary nutrient estimates from a Food Frequency Questionnaire on 441 men and 401 women enrolled in an Internet-based weight loss intervention study.</p> <p>Results</p> <p>Study 1 test-retest reliability ICCs were strong and ranged from .63 to .79. In study 2, dietary fat cons, fiber/whole grain cons and self-efficacy, fruit and vegetable cons and self-efficacy, and healthy eating social support, environmental factors, enjoyment, and change strategies demonstrated adequate correlations with the corresponding dietary nutrient estimates.</p> <p>Conclusions</p> <p>Brief psychosocial measures related to dietary behaviors demonstrated adequate reliability and in most cases validity. The strongest and most consistent scales related to dietary behaviors were healthy eating change strategies and enjoyment. Consistent convergent validity was also found for the cons of change scales. These measures can be used in intervention studies to evaluate psychosocial mediators of dietary change in overweight and obese individuals.</p

    Make Research Data Public? -- Not Always so Simple: A Dialogue for Statisticians and Science Editors

    Get PDF
    Putting data into the public domain is not the same thing as making those data accessible for intelligent analysis. A distinguished group of editors and experts who were already engaged in one way or another with the issues inherent in making research data public came together with statisticians to initiate a dialogue about policies and practicalities of requiring published research to be accompanied by publication of the research data. This dialogue carried beyond the broad issues of the advisability, the intellectual integrity, the scientific exigencies to the relevance of these issues to statistics as a discipline and the relevance of statistics, from inference to modeling to data exploration, to science and social science policies on these issues.Comment: Published in at http://dx.doi.org/10.1214/10-STS320 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Validity of a Global Positioning System-Based Algorithm and Consumer Wearables for Classifying Active Trips in Children and Adults

    Get PDF
    Accepted author manuscript version reprinted, by permission, from [Journal for the Measurement of Physical Behaviour, 2021, Volume 4: Issue 4: pp. 321–332, https://doi.org/10.1123/jmpb.2021-0019. © Human Kinetics, Inc.Objective: To investigate the convergent validity of a global positioning system (GPS)-based and two consumer-based measures with trip logs for classifying pedestrian, cycling, and vehicle trips in children and adults. Methods: Participants (N = 34) wore a Qstarz GPS tracker, Fitbit Alta, and Garmin vivosmart 3 on multiple days and logged their outdoor pedestrian, cycling, and vehicle trips. Logged trips were compared with device-measured trips using the Personal Activity Location Measurement System (PALMS) GPS-based algorithms, Fitbit’s SmartTrack, and Garmin’s Move IQ. Trip- and day-level agreement were tested. Results: The PALMS identified and correctly classified the mode of 75.6%, 94.5%, and 96.9% of pedestrian, cycling, and vehicle trips (84.5% of active trips, F1 = 0.84 and 0.87) as compared with the log. Fitbit and Garmin identified and correctly classified the mode of 26.8% and 17.8% (22.6% of active trips, F1 = 0.40 and 0.30) and 46.3% and 43.8% (45.2% of active trips, F1 = 0.58 and 0.59) of pedestrian and cycling trips. Garmin was more prone to false positives (false trips not logged). Day-level agreement for PALMS and Garmin versus logs was favorable across trip modes, though PALMS performed best. Fitbit significantly underestimated daily cycling. Results were similar but slightly less favorable for children than adults. Conclusions: The PALMS showed good convergent validity in children and adults and were about 50% and 27% more accurate than Fitbit and Garmin (based on F1). Empirically-based recommendations for improving PALMS’ pedestrian classification are provided. Since the consumer devices capture both indoor and outdoor walking/running and cycling, they are less appropriate for trip-based research
    • …
    corecore