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Abstract

Objective: To investigate the convergent validity of a global positioning system (GPS)-based and 

two consumer-based measures with trip logs for classifying pedestrian, cycling, and vehicle trips 

in children and adults.

Methods: Participants (N = 34) wore a Qstarz GPS tracker, Fitbit Alta, and Garmin vivosmart 3 

on multiple days and logged their outdoor pedestrian, cycling, and vehicle trips. Logged trips were 

compared with device-measured trips using the Personal Activity Location Measurement System 

(PALMS) GPS-based algorithms, Fitbit’s SmartTrack, and Garmin’s Move IQ. Trip- and day-level 

agreement were tested.

Results: The PALMS identified and correctly classified the mode of 75.6%, 94.5%, and 96.9% 

of pedestrian, cycling, and vehicle trips (84.5% of active trips, F1 = 0.84 and 0.87) as compared 

with the log. Fitbit and Garmin identified and correctly classified the mode of 26.8% and 17.8% 

(22.6% of active trips, F1 = 0.40 and 0.30) and 46.3% and 43.8% (45.2% of active trips, F1 = 0.58 

and 0.59) of pedestrian and cycling trips. Garmin was more prone to false positives (false trips 

not logged). Day-level agreement for PALMS and Garmin versus logs was favorable across trip 

modes, though PALMS performed best. Fitbit significantly underestimated daily cycling. Results 

were similar but slightly less favorable for children than adults.
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Conclusions: The PALMS showed good convergent validity in children and adults and 

were about 50% and 27% more accurate than Fitbit and Garmin (based on F1). Empirically-

based recommendations for improving PALMS’ pedestrian classification are provided. Since the 

consumer devices capture both indoor and outdoor walking/running and cycling, they are less 

appropriate for trip-based research.
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Pedestrian (e.g., walking) and cycling trips are important sources of physical activity in 

children and adults (Sahlqvist et al., 2012; Schoeppe et al., 2013). Increasing time spent 

walking and cycling among adults is recommended for population health and is a goal 

of the U.S.’s Healthy People 2030 initiative (U.S. Department of Health and Human 

Services, 2021) as well as global efforts (Giles-Corti et al., 2016; Global Advocacy for 

Physical Activity, & Advocacy Council of the International Society for Physical Activity 

Health, 2012; World Health Organization, 2019). However, active trips can be challenging 

to quantify. Identifying valid tools for objectively measuring active trips is critical for 

advancing physical activity research, particularly research involving the built environment 

and/or trip-based (e.g., walking) interventions. For example, objective data on physical 

activity accumulated through pedestrian and cycling trips are important to cite as evidence 

supporting public investment in built environment improvements (Saelens et al., 2003; Sallis 

et al., 2016). In addition, as numerous health interventions aim to increase pedestrian or 

cycling trips, device-based measures of these behaviors are becoming increasingly important 

for evaluation (Bird et al., 2013; Ogilvie et al., 2007; The Community Guide, 2021).

Time spent in active trips has been most commonly assessed in health research using 

self-report measures (Craig et al., 2003; Raza et al., 2020; Saunders et al., 2013). More 

recently, device-based measures have been developed that can address some limitations and 

inaccuracies of self-report measures (Prince et al., 2008). Device-based trip classification 

tools used in research have primarily involved wearable global positioning system (GPS) 

receivers, sometimes combined with accelerometers, and computational algorithms for 

processing the location information. The data processing algorithms generally use speed and 

distance information to identify when trips occur and classify trip mode (e.g., pedestrian, 

cycling, in vehicle; Carlson, Jankowska, et al., 2015; Chaix et al., 2014; Cho et al., 

2011; Ellis et al., 2014; Kang et al., 2013). Only one set of processing algorithms is 

currently available to end users through an easily accessible computational interface. 

These GPS-based trip processing algorithms were originally part of the Personal Activity 

Location Measurement System (PALMS; Carlson, Jankowska, et al., 2015) and recently 

incorporated to the Human Activity Behavior Identification Tool and Data Unification 

System (HABITUS) (HABITUS, 2020). While research has shown that these algorithms 

have good validity in adult commuter cyclists (Carlson, Jankowska, et al., 2015), less is 

known about their validity in children and more generalizable samples of adults.

Consumer wearables, like those from Fitbit and Garmin, are also able to classify time 

spent in pedestrian and cycling trips. The trip classification features of these wearables, 
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Fitbit SmartTrack and Garmin Move IQ, automatically apply proprietary algorithms to 

accelerometer data from the wearables and do not require input from the user. Consumer 

devices have some benefits over research devices, such as greater appeal to participants, 

long-term data collection, near real-time data transmission, and ease of data processing for 

end users, which make them important to investigate. Research has shown that wearable 

devices can have moderate to high validity for measuring energy expenditure, moderate to 

vigorous physical activity, and step counts, though less is known about their utility and 

validity for classifying active trips (Evenson et al., 2015; Ferguson et al., 2015; Fuller et al., 

2020; O’Driscoll et al., 2020). While a previous study investigated Fitbit and Garmin trip 

classification features and found them to have good validity, the study was limited by using a 

controlled protocol with little variation in trip lengths, and children were not included (Dorn 

et al., 2019). A next step is to investigate these tools when applied to free-living activities in 

multiple age groups.

This study aimed to investigate the convergent validity of three trip classification tools 

by testing their agreement with trip logs in children and adults across multiple days of 

wear time during free-living activities. The three tools included the PALMS/HABITUS 

GPS-based algorithms, Fitbit SmartTrack feature, and Garmin Move IQ feature.

Methods

Participants and Procedures

Participants were 18 adults (77.8% were women), ages 18–60 years (mean age = 40.53, SD 
= 9.87), and 16 children (43.7% were girls), ages 9–17 years (mean age = 14.5, SD = 1.77), 

identified through postings to Children’s Mercy Hospital internal website, word-of-mouth, 

and referrals. Some child participants were children of the adult participants. Data were 

collected in spring 2018. Inclusion criteria were the ability to speak and read English and 

be able to follow the study procedures described below. As cycling trips were required for 

participation, access to a bicycle was also an inclusion criterion, though the participant did 

not need to have a history of cycling or self-identify as a cyclist. Study procedures included 

wearing four activity monitors concurrently for at least 10 hr per day for up to 4 days, 

engaging in at least two pedestrian trips, two cycling trips, and two vehicle trips over the 

wear period, and logging all trips in a trip log. For the pedestrian trips, participants could 

choose to walk or run. Participants were asked that at least one of the pedestrian trips 

and one of the cycling trips last at least 10 min. The participant sample size was based 

on previous trip-based measurement studies with similar analyses and acceptable limits of 

agreement (Dorn et al., 2019), with the data collection goals for the present study being ≥60 

trips per mode, ≥2 days of wear time per participant, and ≥30 participants. Participants were 

offered a $50 cash card as an incentive. The study was approved by the Children’s Mercy 

Hospital protections committee.

Measures

Trip Log—A pocket-sized paper trip log was given to all participants with spaces to log 

the start time, end time, and mode of each trip they conducted. Participants were instructed 

to log all trips taken while wearing the devices if they occurred outdoors and spanned at 
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least 100 yards. Participants were instructed to write the precise minute each trip started and 

ended. The accuracy of the log was emphasized during the consent appointment and upon 

enrollment as being the most important aspect of the study, as it provided the comparison 

measure for testing convergent validity. For all child participants, the parent or caregiver was 

asked to assist their child in completing the log accurately. In some cases, both the parent 

and the child participated in the study together. Automated text reminders were sent each 

evening to remind participants to log all trips taken while wearing the devices. Upon study 

completion, study staff reviewed the trip log with the participant to quality check for missing 

trip modes, end times, or retroactively log trips that were not recorded.

GPS Data Collection and Processing—A Qstarz BT-Q1000XT GPS receiver was 

worn on a belt at the hip. The device collected latitude, longitude, elevation, and satellite 

data in 15-s epochs. The data were processed in PALMS (Qstarz, Taipei, Taiwan) to classify 

pedestrian, cycling, and vehicle trips (Carlson, Jankowska, et al., 2015). The algorithms 

allow flexibility over several parameter settings. In the present study, the following settings 

were used based on our prior testing and use of the algorithms (Carlson et al., 2020; Carlson, 

Jankowska, et al., 2015; Carlson, Saelens, et al., 2015). Groups of sequential fixes (≥1 min) 

were considered trips if they spanned ≥100 m with an average speed ≥1 km/hr. Pauses of 

up to 3 min were allowed within a trip. Trips with a 90th percentile speed ≥25 km/hr were 

classified as vehicle trips. Trips with a 90th percentile speed between 10 and 24 km/hr were 

considered cycling trips, and trips with 90th percentile speeds lower than 10 km/hr were 

considered pedestrian trips. The signal-to-noise ratio (SNR) was used to remove trips that 

occurred indoors as well as eliminate false trips that occur when there is signal interference 

due to limited satellite access while indoors. The SNR was not used to remove indoor points 

from the beginning or end of trips, which is an option in PALMS. Points with an SNR < 225 

were considered to be indoors (Lam et al., 2013), and “trips” with ≤50% of points outdoors 

were recoded as nontrips. This was to minimize periods of GPS scatter (i.e., inaccurate GPS 

fixes bouncing around a location) from being misclassified as trips. Post-PALMS processing 

involved aggregating the trip information to the minute level, with a given minute being 

classified as a trip if PALMS had indicated that any epochs during that minute were part of a 

trip.

Accelerometer Data Collection and Processing—Participants wore an ActiGraph 

GT3X+ (ActiGraph, Pensacola, FL) accelerometer at their right hip affixed to the same belt 

as the GPS device. Wear time for the ActiGraph was used to infer valid wear time for the 

GPS monitor and the consumer wearables, as participants were instructed to wear all at the 

same time. ActiLife software was used to download device data and identify valid wear time 

using the Choi algorithm applied to vector magnitude counts per minute using a 90-min 

window, 30-min stream frame, and 2-min tolerance (Choi et al., 2011, 2012).

Fitbit and Garmin Data Collection and Processing—Participants were asked to 

wear a Fitbit Alta device on their preferred wrist, in accordance with recommendations 

from the manufacturer (FitBit, 2020a). The Garmin vívosmart 3 was always worn on the 

nondominant wrist as recommended by the manufacturer (Garmin, 2020a). At the start of 

the measurement period, the Fitbit account was updated to reflect the chosen wrist of the 
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participant (dominant vs. nondominant). The devices were connected to a Fitbit and Garmin 

account to retrieve the data at the end of each participant’s wear period. The proprietary 

consumer wearable automatic activity detection feature, called SmartTrack for Fitbit and 

Move IQ for Garmin, automatically classifies activities, such as walking, running, cycling, 

and swimming based on algorithms applied to the accelerometer data. Vehicle time was 

not an activity type included in the classifications and thus was not investigated for the 

consumer devices. Participants were instructed not to use the user interface of the device 

to start an activity manually and instead allow the SmartTrack and Move IQ features to 

capture the trips. Fitbit and Garmin each state that the activity must occur for at least 10 

consecutive minutes to be detected (FitBit, 2020b; Garmin, 2020b), with the exception for 

Garmin running activities, which have a minimum detection threshold of 5 min (Garmin, 

2020b). We grouped walking and running together as pedestrian trips. The consumer device 

software provided the start and end time (date, hour, and minute) and mode (pedestrian or 

cycling) of each trip classified by each device.

Analysis

Trip-level agreement for trip detection and trip mode classification was calculated for each 

test measure (PALMS, Fitbit, and Garmin) as compared with the trip logs and presented 

using confusion matrices. Sensitivity (i.e., recall) and F1 scores were also calculated for 

each trip mode, with the latter used as a measure of accuracy based on the harmonic mean 

of sensitivity and positive predictive value. PALMS-, Fitbit-, and Garmin-detected trips were 

considered to be in agreement with the trip log if at least 1 min of the logged trip was 

detected by the test measure. A “false trip” (i.e., false positive) was defined as any trip 

detected by the test measure that did not have at least 1 min of overlap with a logged trip. 

A “missed trip” (i.e., false negative) was defined as any logged trip that did not have at 

least 1 min of overlap with a trip detected by the test measure. Fitbit and Garmin analyses 

were conducted both with and without logged trips under the minimum detection threshold 

(10 min) included in the log (comparison) data set. The trip-level analyses were conducted 

for the full sample (all ages) and separately for children and adults. The distributions of the 

duration of logged trips that failed to be detected by the consumer devices (i.e., missed trips) 

were plotted to identify whether most were close to the 10-min detection threshold or well 

over the threshold, after excluding logged trips <10 min.

For duration agreement, day-level variables were computed for time spent in each trip mode 

(in minutes per day) as indicated by each measurement method. Means and SDs were 

used to describe variables across measurement methods. Mean absolute error (MAE) and 

Spearman correlations were used to test day-level agreement between each test measure and 

the trip log. Spearman correlations were interpreted as small (≤.40), moderate (.41–.60), 

large (.61–.80), and very large (.81–1.0) (Landis & Koch, 1977). In addition, bias values and 

confidence limits representing the difference between measurement methods were assessed 

using mixed-effects linear regression, accounting for nesting of days within participants, 

and results were plotted across models. Within these models, interaction terms were used 

to test whether day-level agreement (i.e., bias) differed by age group (children vs. adults). 

For the day-level analyses among the consumer devices, separate models were conducted for 

(a) trips with logged durations over the minimum detection threshold and (b) all trips. All 
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analyses were performed in SPSS Statistics (version 24.0; IBM Corp., Armonk, NY) (IBM 

Corp., 2016).

Results

The mean number of days devices were worn was 2.6 (SD = 1.1), for a total of 89 days of 

data (34 from children and 55 from adults). The devices were worn for a mean of 9.7 hr per 

day (SD = 4.2). Participants logged 380 total trips, with 151 trips conducted by children and 

229 by adults (Figure 1). Over half of the trips were vehicle trips, comprising 62.3% of all 

trips conducted by children and 57.2% of all trips conducted by adults. Pedestrian trips had 

a mean duration of 10.7 min (SD = 11.4), cycling trips had a mean duration of 11.8 min (SD 
= 10.4), and vehicle trips had a mean duration of 21.4 min (SD = 20.1). Mean trip duration 

was similar between children and adults, within ≤0.6 min.

Trip-level agreement between PALMS and the logs was similar for children and adults 

(Table 1). The PALMS identified and correctly classified the mode of 75.6%, 94.5%, and 

96.9% of pedestrian, cycling, and vehicle trips (84.5% of all active [pedestrian and cycling] 

trips) as compared with the trip log (i.e., sensitivity). The F1 scores were 0.84 for pedestrian, 

0.87 for cycling, and 0.98 for vehicle trips. The PALMS had only one false trip (0.3% of 

all PALMS trips), which inspection of the GPS data suggested was caused by GPS scatter. 

The PALMS failed to identify (i.e., missed) 2.1% of all logged trips, most of which were 

pedestrian trips. The PALMS misclassified the mode of 6.1% of all logged trips, and the 

most common type of misclassification was classifying a logged pedestrian trip as a cycling 

trip. Inspection of the GPS data revealed that four of the logged pedestrian trips that were 

misclassified by PALMS as cycling trips had a high pedestrian speed, indicative of running. 

Two of the logged walking trips that were misclassified as cycling trips had a vehicle trip 

occur just before the pedestrian trip. For these pedestrian trips, PALMS grouped the latter 

part of the vehicle trip with the pedestrian trip, which led to a higher average speed for 

the pedestrian trip thus leading it to be classified as cycling. The remaining five logged 

pedestrian trips that were misclassified as cycling trips spanned both outdoors and indoors. 

The outdoor time led to a high SNR value, which prevented the trip from being removed, but 

the indoor time led to GPS scatter due to poor communication with the GPS satellite when 

indoors, which led to a higher average speed and thus the trip being classified as cycling.

The removal of logged pedestrian or cycling trips lasting <10 min (to match the consumer 

device manufacturer’s minimum detection threshold) resulted in the omission of 39 trips, 

with 56.4% of these removed trips being logged pedestrian trips (could include runs). Only 

one (2.6%) of these 39 logged trips had an associated trip classified by a consumer device, 

and it was a pedestrian trip that was identified by Garmin to last 15 min. Thus, the removal 

of logged trips lasting <10 min only contributed to one false trip in the Garmin data and no 

false trips in the Fitbit data set.

When considering all logged pedestrian and cycling trips, including those lasting <10 min, 

Fitbit identified and correctly classified the mode of 26.8% and 17.8% of pedestrian and 

cycling trips (22.6% of all active trips) as compared with the trip log. When considering 

only logged trips lasting at least 10 min, Fitbit identified and correctly classified the mode 
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of 36.7% and 23.2% of pedestrian and cycling trips (30.2% of all active trips) as compared 

with the trip log. Fitbit did not misclassify the mode of any logged trips. Seven trips that 

were “identified” by Fitbit were not true trips, as they did not appear in the trip logs (i.e., 

16.7% of all Fitbit trips were false trips). Fitbit failed to identify 77.4% of all logged trips 

and 69.8% of logged trips lasting at least 10 min. Figure 2a and 2b shows that the logged 

pedestrian and cycling trips lasting at least 10 min that Fitbit failed to identify had a mean 

duration of 16.9 min (SD = 11.1) and 14.5 min (SD = 7.0), respectively. While a large 

proportion of the logged trips lasting between 10 and 14.9 min were missed by Fitbit (79.3% 

and 81.6% of all logged trips between 10 and 14.9 min), and a large proportion of the missed 

trips were between 10 and 14.9 min (60.5% and 72.1% of all missed pedestrian and cycling 

trips), Fitbit also missed many trips that lasted longer than 15 min. Trip-level agreement 

between Fitbit and the trip logs was sometimes poorer in children as compared with adults.

When considering all logged pedestrian and cycling trips, including those lasting <10 min, 

Garmin identified and correctly classified the mode of 46.3% and 43.8% of pedestrian and 

cycling trips (45.2% of all active trips) as compared with the trip log. When considering only 

logged trips lasting at least 10 min, Garmin identified and correctly classified the mode of 

61.7% and 57.1% of pedestrian and cycling trips (59.5% of all active trips) as compared 

with the trip log. Garmin did not misclassify the mode of any logged trips. Fifteen trips, 

or 17.6%, of all trips “identified” by Garmin were false trips, as they did not appear in the 

trip logs. (This includes logged trips under 10 min.) Garmin failed to identify 54.8% of all 

logged trips and 40.2% of logged trips lasting at least 10 min. Figure 2c and 2d shows that 

the logged trips lasting at least 10 min that Garmin failed to identify had a mean duration 

of 18.3 min (SD = 13.7) for pedestrian and 14.3 min (SD = 9.1) for cycling trips. A large 

proportion of the logged trips lasting between 10 and 14.9 min were missed by Garmin 

(41.4% and 75.0% of all logged trips between 10 and 14.9 min), and a large proportion of 

the missed trips were between 10 and 14.9 min (52.2% and 87.5% of all missed pedestrian 

and cycling trips), though Garmin also missed many pedestrian trips that lasted longer than 

15 min. Regarding cycling trips, Garmin missed few that were longer than 15 min. Trip-level 

agreement between Garmin and the trip logs was sometimes poorer in children as compared 

with adults.

Table 2 presents day-level agreement between each test measure and the trip logs. For 

PALMS versus the trip logs, MAEs were 40.6% of the log mean for time spent in pedestrian 

trips, 21.0% for time spent in cycling trips, and 13.0% for times spent in vehicle trips. All 

Spearman correlations were very large (.81, .85, and .94). For Fitbit versus trip log, after 

excluding trips <10 min from the log-based calculations, MAEs were 44.0% of the log 

mean for time spent in pedestrian trips and 75.7% for time spent in cycling trips. Spearman 

correlations were large (.71) and moderate (.40). For Garmin versus trip log, after excluding 

trips <10 min from the log-based calculations, MAEs were 62.6% of the log mean for time 

spent in pedestrian trips and 51.9% for time spent in cycling trips. Spearman correlations 

were large (.68 and .70). Agreement between the consumer device features and trip logs 

was similar but generally slightly poorer when logged trips with durations <10 min were 

included in the analyses.
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Figure 3 shows the direction and magnitude of bias for each test measure relative to the trip 

logs. The bias values for PALMS were nonsignificant for all trip modes, though on average 

PALMS slightly underestimated time spent in pedestrian trips by 3.0 min/day (19.6%). Fitbit 

slightly underestimated time spent in pedestrian trips by an average of 4.3–5.4 min/day 

(30.9%–35.7%), but these biases were nonsignificant. Fitbit significantly underestimated 

time spent cycling by an average of 6.1–7.2 min/day (58.4%–62.1%). The bias values 

for Garmin were nonsignificant for all trip modes, though on average Garmin slightly 

underestimated time spent cycling by an average of 2.5–3.1 min/day (23.5%–27.2%).

The bias estimates for each measurement method shown in Table 2 did not differ 

significantly between children and adults as indicated by nonsignificant interactions. The 

following regression coefficients and CIs reflect the difference in the level of overestimation 

or underestimation of time (in minutes per day) in each trip mode for children as compared 

with adults: PALMS (walk, B = −2.53 [16.7% of log mean], 95% CI [−14.03, 8.97]; cycle, 

B = −2.11 [18.2% of log mean], 95% CI [−11.71, 7.47]; vehicle, B = −1.48 [2.5% of log 

mean], 95% CI [−32.76, 29.81]); Fitbit, excluding trips under 10 min (walk, B = 0.40 [2.9% 

of log mean], 95% CI [−10.60, 11.40]; cycle, B = −2.51 [24.2% of log mean], 95% CI 

[−11.22, 6.20]); and Garmin, excluding trips under 10 min (walk, B = −8.50 [61.1% of log 

mean], 95% CI [−21.02, 4.03]; cycle, B = −3.98 [38.3% of log mean], 95% CI [−12.95, 

4.98]). An example interpretation is that PALMS underestimated time in pedestrian trips by 

about 4.53 min/day (29.8%) in children (12.22 − 15.19 − 2.53 × 0.62) and 2.01 min/day 

(13.2%) in adults (12.22 − 15.19 + 2.53 × 0.38). The values 0.62 and 0.38 reflect the 

proportion of the 89 wear days that were from adults and children, respectively.

Discussion

Present findings indicated the PALMS GPS-based trip algorithms have good validity among 

children and adults for detecting trips and accurately classifying trip mode across pedestrian, 

cycling, and vehicle trips. The PALMS was about 50% and 27% more accurate than the 

Fitbit SmartTrack and Garmin Move IQ consumer device features, respectively, based on 

differences in trip-level F1 scores. These consumer device features captured indoor walking/

running and cycling, which led to false trips, and were unable to detect active trips under 

10 min and all vehicle trips, as designed by the manufacturers. Given that increasing 

engagement in active trips is a public health priority that has been highlighted in the United 

States (U.S. Department of Health and Human Services, 2021) and globally (Giles-Corti et 

al., 2016; Global Advocacy for Physical Activity, & Advocacy Council of the International 

Society for Physical Activity Health, 2012; World Health Organization, 2019) and targeted 

by numerous interventions and policy efforts (Bird et al., 2013; Ogilvie et al., 2007; The 

Community Guide, 2021), there is a need to more widely incorporate trip-based measures 

into research and practice. Objective measures in particular are advantageous when accurate 

and detailed trip information is desired while minimizing participant burden. The PALMS 

trip algorithms provide an opportunity to incorporate trip-based measures with good validity 

more widely into research and practice through the use of GPS trackers, which have been 

shown to be acceptable for use in numerous population groups (Kerr et al., 2011).
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The PALMS algorithms had good validity at both the trip and day level. Their ability 

to accurately capture the duration, mode, and approximate timing of each trip while 

minimizing false positives (false trips) allows them to support investigation of research 

questions that require day level or within-day information. The PALMS algorithms 

performed similarly in the present study as they did in a previous validation study that 

used annotated images from person-worn cameras (SenseCams; the SenseCam; Microsoft, 

Redmond, WA) as the comparison measure. The slight underestimation of daily time 

spent in each trip mode by PALMS in the present study, which is in contrast to the 

previously mentioned study showing slight overestimation by PALMS, may have been due 

to overestimation of trip time in the logs, which has been shown previously (James et al., 

2016). There has been one other study that tested the validity of the PALMS algorithms 

against trip diaries (Kang et al., 2018). That study found poorer validity, mostly caused 

by overestimation of trips by PALMS (i.e., false trips), which was likely due to the use 

of an older GPS device that did not capture SNR leading to GPS scatter when indoors to 

mimic trip speeds and distances. In the present study, the PALMS algorithms performed 

as well as or better than other GPS-based trip processing algorithms, some of which 

incorporate additional information, such as from geographic information systems and/or 

accelerometers (Brondeel et al., 2015; Cho et al., 2011; Ellis et al., 2014; Gong et al., 2012; 

Kang et al., 2013; Troped et al., 2008). An advantage of the PALMS algorithms is that 

they are available to end users without computational or programming expertise through a 

user-friendly interface that supports parameter customization (i.e., HABITUS). The present 

study extends previous findings on PALMS by showing good validity among children and 

a more generalizable sample of adults, as the previous study was limited to adults who 

self-identified as commuter cyclists and thus may have different cycling patterns than other 

population groups (e.g., higher speeds and longer distances). Relatedly, in the study of 

commuter cyclists, using a speed of ≥35 km/hr to infer cycling resulted in misclassification 

of some cycling trips and vehicle trips, whereas, in the present study, only one cycling 

trip was misclassified as a vehicle trip despite a lower speed of ≥25 km/hr being used. 

This highlights the importance of using population-appropriate speed thresholds in PALMS, 

which are user adjustable, for distinguishing between trip modes. The current findings also 

add to previous evidence by showing there is room for improvement in PALMS’ validity for 

classifying pedestrian trips.

The primary source of error among PALMS’ classification of pedestrian trips was that 

pedestrian trips were sometimes misclassified as cycling trips due to three circumstances 

(a) fast running speeds, (b) a pedestrian trip spanning outdoors and indoors with indoor 

satellite interference, and (c) the grouping of a pedestrian trip immediately following or 

preceding a vehicle trip. Addressing these circumstances would primarily result in improved 

accuracy in pedestrian and cycling trip classification but also in vehicle trip classification, 

because misclassification of one mode impacts other modes. Our recommendation for the 

first circumstance is to identify habitual runners using a baseline survey and employ a higher 

speed threshold among those participants to distinguish between pedestrian and cycling 

trips (e.g., 10–12 km/hr). The second circumstance may be addressable by manipulating 

user adjustable PALMS parameters. Increasing the proportion of the trip that is required 

to be outdoors for the trip to be considered valid (50% was used in the present study), 
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and/or removing indoor points from the beginning and end of trips, both of which are 

based on SNR, may result in the outdoor portion of the trip being appropriately classified 

as pedestrian. However, we have observed previously (Carlson et al., 2020) that a higher 

threshold can result in failure to detect short vehicle trips (e.g., to school), which can have 

lower SNR values due to being inside a vehicle and/or immediately leaving an indoor 

location (e.g., home). Although the thresholds for these parameters are applied to all trip 

modes, a potential solution may be to run the algorithms with two different thresholds (a 

lower, e.g., 50%, and higher, e.g., 75%–90%) and merge the output data, using the higher 

threshold for pedestrian and cycling trips and lower threshold for vehicle trips. However, 

caution should be used when employing a higher threshold in urban areas, as research has 

shown that the presence of large buildings can impact SNR, falsely indicating indoor time 

(Schipperijn et al., 2014). Using a threshold lower than 50% is not recommended because 

it is likely to result in many false trips, as we and others have shown previously (Carlson, 

Jankowska, et al., 2015; Kang et al., 2018). The third circumstance listed above may be the 

most challenging to address and is likely to require modifications to the PALMS algorithms 

themselves or post-PALMS processing approaches, rather than manipulating user adjustable 

parameters. In the present study, we observed that these pedestrian trips, in addition to being 

misclassified as cycling, immediately preceded or followed a true vehicle trip. Thus, part 

of the vehicle trip (very beginning or very end), though not the entire vehicle trip, was 

being grouped with the pedestrian trip. Such circumstances could be flagged relatively easily 

in the PALMS output data set by identifying when a predicted cycling trip immediately 

preceded or followed a predicted vehicle trip. Each circumstance could then be visualized, 

or a speed-based algorithm could be created, to determine the proper point of mode shift 

as well as the proper mode of each trip segment. This would result in an extension of the 

predicted vehicle trip, shortening of the predicted cycling trip, and reclassification of the 

predicted cycling trip as pedestrian. Another solution may be to incorporate accelerometer 

data into the PALMS algorithms, which currently only utilize GPS information. Future 

research is needed to test these recommendations, and users should use caution and visual 

data inspection when considering parameter adjustments and/or post-PALMS corrections.

Though some sample-level validity estimates for the consumer device features were 

acceptable (e.g., some biases), individual trip-level validity was generally poor, even when 

considering only trips that met the minimum duration of 10 min. Both Fitbit’s SmartTrack 

and Garmin’s Move IQ failed to detect a substantial number of trips over 10 min while 

also exhibiting many false positives (false trips), primarily for pedestrian trips. While it is 

possible that some of the trips that the consumer devices failed to detect were overestimated 

in the logs (i.e., a trip that truly lasted <10 min, under the detectable threshold, may 

have been recorded in the log as lasting more than 10 min), both consumer devices also 

failed to detect many trips that lasted more than 15 min, except that Garmin missed few 

cycling trips over 15 min. Thus, overestimation of trip duration in the trip logs was not 

likely a major cause of the missed trips in general. Since SmartTrack and Move IQ aim to 

detect walking and running in any location, rather than only outdoor walking and running, 

it is likely that at least some of the false pedestrian trips were pedestrian activities that 

occurred indoors. Interestingly, missed trips were more common among children, whereas 

false trips were more common among adults. The former may have been due to children’s 
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unique movement patterns (Welk et al., 2000), whereas the latter may have been due to 

adults walking or moving around indoors, such as while shopping or doing household work 

(which could meet the consumer device manufacturer’s conceptualization of walking). This 

highlights the challenge of solely using movement information from accelerometers to infer 

pedestrian and cycling trips, as is done by the consumer device features. Though day-level 

validity estimates were more favorable than the trip-level estimates, this was largely due to 

false trips contributing to (i.e., increasing) the daily time spent in each trip mode. Taken 

together, these consumer device features do not appear to have acceptable validity for many 

research applications, particularly when aiming to capture outdoor trips. We recommend 

exerting caution even when using these features for providing day-level information on time 

spent in outdoor pedestrian and cycling trips, as present findings suggest these measures 

can overestimation or underestimate daily time spent in pedestrian or cycling trips by 

~50%–75%. When investigators are interested in all walking and/or running, rather than 

only outdoor pedestrian trips as is typically the case in trip-based or active transportation 

research, consumer wearables may be more appropriate. Incorporating GPS information 

may be promising for improving the validity of trip classification from consumer devices 

and better matching an outdoor definition of pedestrian trips.

Though the selection of measures should be informed by their validity, there are several 

additional factors to consider and trade-offs between research and consumer devices. 

Although the PALMS algorithms are provided in a user-friendly interface, some expertise is 

required to collect and process the data and to understand the implications of manipulating 

parameter settings. Fees are likely to be associated with using the algorithms to offset 

computing costs. The consumer devices require little to no expertise or computing/

processing fees unless an application programming interface (API) is being used, though 

we recommend using the APIs for determining wear time as detailed in the following 

section. Consumer devices can be particularly advantageous for monitoring and feedback, 

and through the use of an API, information can be transmitted in near real time to inform 

interventions (Balbim et al., 2021; Brickwood et al., 2019). Such capabilities are not 

available through GPS trackers like the one used in the present study but are becoming 

available through the use of GPS and accelerometer information from smartphones (Hurvitz 

et al., 2014; King et al., 2016; Wang et al., 2021). Although consumer devices have 

the advantage of measuring overall physical activity and step counts, combined GPS and 

accelerometer data provide substantially more information about physical activity locations 

that can support investigation of innovative and important location-based research questions 

not possible with consumer device data (Duncan et al., 2009; Jankowska et al., 2015). 

In addition to an inability to capture pedestrian and cycling trips lasting <10 min and 

distinguish between indoor and outdoor activities, the Fitbit SmartTracks and Garmin Move 

IQ features do not capture vehicle trips. Vehicle trips are important to investigate in health 

research because they can be an important source of sedentary time and are important to 

consider when targeting mode shifts (e.g., switching from vehicle to pedestrian). Another 

advantage of PALMS is that users can customize parameters for their target population or 

study purpose, whereas consumer device algorithms generally are inflexible and algorithms 

can evolve or drastically change over time with little transparency.
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Strengths and Limitations

Study strengths included the comparison of validity estimates between children and adults 

and across research and consumer measures. The focus on free-living activities supports 

generalizability of the current findings over previous research that investigated the consumer 

trip classification features using trips of prescribed and uniform durations occurring in the 

same locations (treadmill and university track; Dorn et al., 2019). Study limitations included 

the reliance on trip logs for the comparison measure, which can have inaccuracies, though 

the importance of the logs was emphasized to participants and logs have been shown to 

have good validity (James et al., 2016). It is possible that some of the trips that failed to 

be detected by the consumer devices occurred when the participant was not wearing the 

device, because nonwear time was not measured for the consumer devices. Future studies 

can address this limitation by using the companies’ APIs, which provide epoch-level (e.g., 

every 15 min for Garmin) information that can be used to infer wear time. Since the present 

study focused on only three trip modes, it is unclear how the measures would perform on 

other modes, such as skate-board or scooter trips. The use of public transit, although not 

directly assessed, was likely low in the present sample, which limits generalizability of 

findings to public transit users. Public transit is known to create challenges with GPS-based 

trip classification due to the high frequency of multimode trips (e.g., walking to transit) 

and potential for satellite interference (e.g., when riding subway). Differentiating between 

transit and private vehicle trips is also an important measurement area to explore in future 

studies, as increasing transit use is a public health priority for both health and environmental 

reasons. Similarly, future studies should aim to differentiate between walking and running, 

as the latter is less likely to be a target of interventions to increase active transportation. It 

is important to note that the present study defined trips as occurring outdoors and spanning 

at least 100 yards. Though walking, and to a lesser extent running and cycling, can occur 

indoors, indoor trips are often missed by GPS-based classification measures due to poor 

communication with GPS satellites resulting in GPS scatter. Since the PALMS was recently 

discontinued and transferred to the HABITUS, it is important for future research to confirm 

comparability of the algorithms’ performance between platforms.

Conclusions

The use of valid and appropriate measures of trips and trip mode is critical for advancing 

research and practice in physical activity promotion. There is growing evidence in support of 

the validity and utility of GPS-based trip measures, such as the PALMS algorithms, which 

present findings indicate have good validity for a range of trip- and day-level applications 

in both children and adults. Consumer devices may be useful for measuring pedestrian and 

cycling activity in some circumstances but concerns over validity for measuring outdoor 

trips limit their overall utility for active transportation and other trip-based research. Given 

the importance of active trips to overall physical activity (Sahlqvist et al., 2012; Schoeppe 

et al., 2013), more widespread application of trip-based measures is needed to accelerate 

physical activity promotion interventions and policies.
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Figure 1 —. 
Description of trips logged.
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Figure 2 —. 
Percentage of trips of different lengths failed to be identified by the Fitbit and Garmin 

devices across children and adults. aLogged pedestrian and cycling trips with a duration 

<10 min were excluded from analysis due to manufacturer’s minimum detection threshold. 

Values above each bar represent the number of missed trips within the given trip duration 

range. The percentage of trips missed was calculated as the number of missed trips within 

the given duration range divided by the total number of logged trips within the given 

duration range. Within each chart, the n reflects the total number of missed trips across all 

trip duration ranges, and the overall mean and SD duration of these missed trips are provided 

(in minutes per day).
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Figure 3 —. 
Mean bias and 95% CIs from mixed-effects models. aLogged pedestrian and cycling trips 

with a duration <10 min were excluded from analysis due to manufacturer’s minimum 

detection threshold. The log was the referent measure, so negative values reflect an 

underestimation by the test measure. The mean difference between measurement methods 

was similar between children and adults as indicated by no significant age Group × 

Measurement method interactions (p < .05).
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