22,891 research outputs found

    The equivariant K-theory of isotropy actions

    Full text link
    We compute the equivariant K-theory with integer coefficients of an equivariantly formal isotropy action, subject to natural hypotheses which cover the three major classes of known examples. The proof proceeds by constructing a map of spectral sequences from Hodgkin's K\"unneth spectral sequence in equivariant K-theory to that in Borel cohomology. A new characterization of equivariant formality appears as a consequence of this construction, and we are now able to show that weak equivariant formality in the sense of Harada--Landweber is equivalent with integer coefficients to surjectivity of the forgetful map under a standard hypothesis. The main structure theorem is formally similar to that for Borel equivariant cohomology, which appears in the author's dissertation/dormant book project and whose proof is finally made accessible in an appendix. The most generally applicable corollary of the main theorem for rational coefficients depends on a strengthening of the characterization of equivariant formality due to Shiga and Takahashi, which appears as a second appendix.Comment: 22 pages. Comments extremely welcome

    Computational fluid dynamics in a marine environment

    Get PDF
    The introduction of the supercomputer and recent advances in both Reynolds averaged, and large eddy simulation fluid flow approximation techniques to the Navier-Stokes equations, have created a robust environment for the exploration of problems of interest to the Navy in general, and the Naval Underwater Systems Center in particular. The nature of problems that are of interest, and the type of resources needed for their solution are addressed. The goal is to achieve a good engineering solution to the fluid-structure interaction problem. It is appropriate to indicate that a paper by D. Champman played a major role in developing the interest in the approach discussed

    Magnetic Excitations of Stripes and Checkerboards in the Cuprates

    Get PDF
    We discuss the magnetic excitations of well-ordered stripe and checkerboard phases, including the high energy magnetic excitations of recent interest and possible connections to the "resonance peak" in cuprate superconductors. Using a suitably parametrized Heisenberg model and spin wave theory, we study a variety of magnetically ordered configurations, including vertical and diagonal site- and bond-centered stripes and simple checkerboards. We calculate the expected neutron scattering intensities as a function of energy and momentum. At zero frequency, the satellite peaks of even square-wave stripes are suppressed by as much as a factor of 34 below the intensity of the main incommensurate peaks. We further find that at low energy, spin wave cones may not always be resolvable experimentally. Rather, the intensity as a function of position around the cone depends strongly on the coupling across the stripe domain walls. At intermediate energy, we find a saddlepoint at (π,π)(\pi,\pi) for a range of couplings, and discuss its possible connection to the "resonance peak" observed in neutron scattering experiments on cuprate superconductors. At high energy, various structures are possible as a function of coupling strength and configuration, including a high energy square-shaped continuum originally attributed to the quantum excitations of spin ladders. On the other hand, we find that simple checkerboard patterns are inconsistent with experimental results from neutron scattering.Comment: 11 pages, 13 figures, for high-res figs, see http://physics.bu.edu/~yaodx/spinwave2/spinw2.htm

    Magnetic Excitations of Stripes Near a Quantum Critical Point

    Get PDF
    We calculate the dynamical spin structure factor of spin waves for weakly coupled stripes. At low energy, the spin wave cone intensity is strongly peaked on the inner branches. As energy is increased, there is a saddlepoint followed by a square-shaped continuum rotated 45 degree from the low energy peaks. This is reminiscent of recent high energy neutron scattering data on the cuprates. The similarity at high energy between this semiclassical treatment and quantum fluctuations in spin ladders may be attributed to the proximity of a quantum critical point with a small critical exponent η\eta.Comment: 4+ pages, 5 figures, published versio

    Series expansions for the third incomplete elliptic integral via partial fraction decompositions

    Get PDF
    We find convergent double series expansions for Legendre's third incomplete elliptic integral valid in overlapping subdomains of the unit square. Truncated expansions provide asymptotic approximations in the neighbourhood of the logarithmic singularity (1,1)(1,1) if one of the variables approaches this point faster than the other. Each approximation is accompanied by an error bound. For a curve with an arbitrary slope at (1,1)(1,1) our expansions can be rearranged into asymptotic expansions depending on a point on the curve. For reader's convenience we give some numeric examples and explicit expressions for low-order approximations.Comment: The paper has been substantially updated (hopefully improved) and divided in two parts. This part is about third incomplete elliptic integral. 10 page

    An investigation of particle mixing in a gas-fluidized bed

    Get PDF
    Mechanism for particle movement in gas-fluidized beds was studied both from the theoretical and experimental points of view. In a two-dimensional fluidized bed particle trajectories were photographed when a bubble passed through
    corecore