6 research outputs found

    Temporal non-independence of foraging dive and surface duration sequences in the European shag Gulosus aristotelis

    Get PDF
    Studies of foraging behaviour and respiratory physiology in breath-holding divers often assume that each dive cycle (dive plus surface duration) is physiologically and ecologically independent within a series (or “bout”) of sequential dives. We tested this assumption using time depth recorders and GPS data for more than 42,000 dives in 1289 bouts by 39 pairs of male and female European shags (Gulosus aristotelis) provisioning nestlings. We found distinct patterns of temporal autocorrelation over several dives within bouts, but this was driven mainly by consecutive dives of the same type, that is, runs of V-shaped (presumably prey searching) versus U-shaped (presumably active hunting) dives. We found no evidence of cumulative physiological effects (i.e. fatigue and/or lowered body temperature) across dives within a bout. However, within-individual variation in dive behaviour revealed complex interactions. Longer bouts were associated with more V-shaped dives, including more and longer runs of V-shaped dives. Meanwhile, more U-shaped dives and longer runs of U-shaped dives acted as limiting factors to bout lengths, with longer bouts being associated with more U-shaped dives only later in the bout. Interactions between bout length and body mass, and between dive order within the bout and body mass, also suggested various size-specific patterns in the temporal distribution of U-shaped dives. Long bouts and bouts ending in longer runs of V-shaped dives were more likely to indicate the termination of foraging activity. However, neither dive type nor bout length predicted whether individuals subsequently (i) stayed to forage in the same location or (ii) moved to a new location to continue foraging within the same trip from the nest. European shags therefore showed temporal non-independence across successive dive cycles and successive bouts of dives, likely as a result of temporal and spatial variation in prey availabilities rather than cumulative physiological effects that might contravene the assumptions in models of optimal dive behaviour. dive behaviour, dive cycles, foraging behaviour, marginal value theorem, physiological constraints, TDR, telemetry, temporal autocorrelationpublishedVersio

    Seabird surveillance: combining CCTV and artificial intelligence for monitoring and research

    Get PDF
    Ecological research and monitoring need to be able to rapidly convey information that can form the basis of scientifically sound management. Automated sensor systems, especially if combined with artificial intelligence, can contribute to such rapid high-resolution data retrieval. Here, we explore the prospects of automated methods to generate insights for seabirds, which are often monitored for their high conservation value and for being sentinels for marine ecosystem changes. We have developed a system of video surveillance combined with automated image processing, which we apply to common murres Uria aalge. The system uses a deep learning algorithm for object detection (YOLOv5) that has been trained on annotated images of adult birds, chicks and eggs, and outputs time, location, size and confidence level of all detections, frame-by-frame, in the supplied video material. A total of 144 million bird detections were generated from a breeding cliff over three complete breeding seasons (2019–2021). We demonstrate how object detection can be used to accurately monitor breeding phenology and chick growth. Our automated monitoring approach can also identify and quantify rare events that are easily missed in traditional monitoring, such as disturbances from predators. Further, combining automated video analysis with continuous measurements from a temperature logger allows us to study impacts of heat waves on nest attendance in high detail. Our automated system thus produces comparable, and in several cases significantly more detailed, data than those generated from observational field studies. By running in real time on the camera streams, it has the potential to supply researchers and managers with high-resolution up-to-date information on seabird population status. We describe how the system can be modified to fit various types of ecological research and monitoring goals and thereby provide up-to-date support for conservation and ecosystem management

    Recovery, body mass and buoyancy: a detailed analysis of foraging dive cycles in the European shag

    No full text
    Foraging dives in birds and mammals involve complex physiological and behavioural adaptations to cope with the breaks in normal respiration. Optimal dive strategies should maximize the proportion of time spent under water actively foraging versus the time spent on the surface. Oxygen loading and carbon dioxide dumping carried out on the surface could involve recovery from the consequences of the last dive and/or preparation in anticipation of the next dive depth and duration. However, few studies have properly explored the causal pattern of effects within such dive cycles, which is crucial prior to any assessment of optimal dive strategies. Using time depth recorders and global positioning system loggers, we recorded over 42 000 dives by 39 pairs of male and female European shags, Phalacrocorax aristotelis. Dives either involved a straight descent and ascent, presumably reflecting an unsuccessful search for prey, or a descent followed by horizontal movement followed by an ascent, presumably reflecting active hunting pursuit of pelagic prey. Males were larger than females, but we were unable to distinguish between sex effects and the nonlinear effects of body mass on dive behaviour. Path analysis showed that within-individual dive-to-dive variation in surface times can best be explained as recovery from the previous dive. As expected in a pelagic hunter with unpredictable dive durations, there was no evidence of anticipatory preparation of oxygen stores in predive surface durations. Among-individual variation in dives showed that body mass directly affected descent durations, but individual variation in all other dive and surface durations was driven by variation in descent duration, suggesting a critical role for dive depth in overcoming body mass-dependent effects of hydrodynamic/wave drag and buoyancy. Our analyses test for the first time certain critical assumptions for studies assessing optimal dive strategies in birds and mammals, thereby revealing new details and avenues for research concerning adaptive diving behaviour. body mass dive behaviour dive preparation dive recovery European shag foraging behaviour Phalacrocorax aristotelis sex differences TDR telemetr
    corecore