4 research outputs found

    Alternative Post-Processing on a CMOS Chip to Fabricate a Planar Microelectrode Array

    Get PDF
    We present an alternative post-processing on a CMOS chip to release a planar microelectrode array (pMEA) integrated with its signal readout circuit, which can be used for monitoring the neuronal activity of vestibular ganglion neurons in newborn Wistar strain rats. This chip is fabricated through a 0.6 ÎĽm CMOS standard process and it has 12 pMEA through a 4 Ă— 3 electrodes matrix. The alternative CMOS post-process includes the development of masks to protect the readout circuit and the power supply pads. A wet etching process eliminates the aluminum located on the surface of the p+-type silicon. This silicon is used as transducer for recording the neuronal activity and as interface between the readout circuit and neurons. The readout circuit is composed of an amplifier and tunable bandpass filter, which is placed on a 0.015 mm2 silicon area. The tunable bandpass filter has a bandwidth of 98 kHz and a common mode rejection ratio (CMRR) of 87 dB. These characteristics of the readout circuit are appropriate for neuronal recording applications

    Study of Oxygen Vacancies in TiO2 Nanostructures and Their Relationship with Photocatalytic Activity

    No full text
    In this research work, we present the synthesis and characterization of four different TiO2 structures, such as nanotubes, nanocavities, nanosheets assembled on nanocavities and nanobowls assembled on nanocavities, prepared by electrochemical anodization using organic electrolytes. After synthesis, the structures were thermally annealed to pass from the amorphous phase to the anatase phase, which is one of the most important crystalline structures of TiO2 due to its high photocatalytic activity and stability. The unique morphology and topography were studied using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The elemental composition was determined by energy-dispersive X-ray spectroscopy (EDS). The anatase phase was verified by Raman microscopy and X-ray diffraction (XRD), the band gap energy was calculated by the Kubelka–Munk function, and the main defect states that generate the emission, as well as their lifetime, were determined by photoluminescence spectroscopy and time response photoluminescence (TRPL), respectively. The TiO2 nanomaterials were tested as catalysts in the photodegradation of a solution of methylene blue using a UV lamp at room temperature. The results showed complex morphologies and different surface roughness areas of these nanomaterials. Furthermore, a relationship between defect states, band gap energy, and photocatalytic activity was established. We found that the catalytic activity was improved as an effect of geometric parameters and oxygen vacancies
    corecore