17 research outputs found

    Polymorphisms in the MBL2 gene are associated with the plasma levels of MBL and the cytokines IL-6 and TNF-α in severe COVID-19

    Get PDF
    IntroductionMannose-binding lectin (MBL) promotes opsonization, favoring phagocytosis and activation of the complement system in response to different microorganisms, and may influence the synthesis of inflammatory cytokines. This study investigated the association of MBL2 gene polymorphisms with the plasma levels of MBL and inflammatory cytokines in COVID-19.MethodsBlood samples from 385 individuals (208 with acute COVID-19 and 117 post-COVID-19) were subjected to real-time PCR genotyping. Plasma measurements of MBL and cytokines were performed by enzyme-linked immunosorbent assay and flow cytometry, respectively.ResultsThe frequencies of the polymorphic MBL2 genotype (OO) and allele (O) were higher in patients with severe COVID-19 (p< 0.05). The polymorphic genotypes (AO and OO) were associated with lower MBL levels (p< 0.05). IL-6 and TNF-α were higher in patients with low MBL and severe COVID-19 (p< 0.05). No association of polymorphisms, MBL levels, or cytokine levels with long COVID was observed.DiscussionThe results suggest that, besides MBL2 polymorphisms promoting a reduction in MBL levels and therefore in its function, they may also contribute to the development of a more intense inflammatory process responsible for the severity of COVID-19

    Imazapyr radicular exudation by Eucalyptus spp. plants

    No full text
    Foram realizados três experimentos com o herbicida imazapyr, em casa de vegetação, com o objetivo de avaliar, por meio de bioensaios, a tolerância de diferentes genótipos de eucalipto ao herbicida e o potencial de exsudação radicular apresentado por Eucalyptus grandis. No estudo sobre tolerância de genótipos utilizaram-se mudas clonais de eucalipto de diferentes procedências, sob cultivo hidropônico, submetidas a diferentes doses de imazapyr. Os resultados evidenciaram comportamentos distintos entre os genótipos avaliados quanto à presença do herbicida em solução, indicando atenção à escolha de doses, sendo estas dependentes do clone utilizado. Quanto à exsudação radicular de imazapyr e, ou, seus metabólitos, foram usadas mudas clonais de E. grandis cultivadas em sistema hidropônico e em recipientes com solo, submetidas à aplicação foliar de imazapyr. Utilizou-se como bioindicadores da presença do herbicida no meio mudas de E. grandis, para o ensaio realizado sob sistema hidropônico, e sementes pré-germinadas de sorgo e pepino, para o ensaio em solo. Verificou-se que o E. grandis apresentou exsudação radicular de imazapyr e, ou, seus metabólitos tóxicos, em solução e no solo, em concentrações capazes de afetar o crescimento dos bioindicadores utilizados, além do fato de que, sob a menor dose utilizada, ocorreu inibição total da emissão de brotações após o corte do eucalipto. Os resultados obtidos sugerem a necessidade de investigações quanto ao destino final da molécula após o seu uso nos sítios de cultivo de eucalipto, bem como sua interferência no meio ambiente.Three experiments were carried out to evaluate the tolerance of different eucalyptus genotypes to the herbicide imazapyr and the radicular exudation potential presented by Eucalyptus grandis, through bioassays, under greenhouse conditions. For the genotype tolerance study, hydroponically cultivated clonal eucalyptus seedlings of different origins were submitted to different doses of imazapyr. The results showed distinct responsesamong the genotypes evaluated in relation to the presence of the herbicide in the solution, indicating that attention should be given to the choice of doses, which will depend on the clone used. As for radicular exudation of imazapyr and/or its metabolites, E. grandis clonal seedlings were cultivated both hydroponically and in containers with soil, and submitted to imazapyr foliar application. E. grandis seedlings were used as bioindicators of the presence of the herbicide in the hydroponic cultivation assay and pre-germinated sorghum and cucumber seeds in the soil assay. E. grandis was found to present radicular exudation of imazapyr and/or of its toxic metabolites, in solution and in soil in concentrations that could affect the growth of the bioindicators used. Besides, under the lowest dose used, total inhibition of sprouting emission occurred after the eucalyptus was cut. The results obtained suggest the need for further investigation on the final fate of the molecule after its use in eucalyptus cultivation sites, as well as its interference in the environment.Conselho Nacional de Desenvolvimento Científico e Tecnológic

    Efeito residual da aplicação de fluazifop-p-butil + fomesafen em solos com plantas-teste Residual effect of fluazifop-p-buthyl + fomesafen in soil with test-plant

    No full text
    Foi realizado um ensaio visando a avaliar o efeito residual da mistura pronta fluazifop-p-butil + fomesafen (160+200g ha-1), presente nos solos ARGISSOLO AMARELO (PA) e LATOSSOLO AMARELO (LA), no crescimento de abóbora, pepino, milho e maracujá, utilizados como plantas-teste. Verificou-se que não houve diferença com relação à matéria seca da parte aérea das plantas-teste dentro do mesmo solo, o mesmo se constatando para matéria seca das raízes, com exceção das plantas de maracujá em LA. Independentemente dos solos analisados, o resíduo do herbicida presente no substrato resultou em redução de plantas daninhas de folhas largas germinadas, sem contudo reduzir o número total de plantas daninhas.It was carried out an assay in order to evaluate the residual effect of the ready mixture fluazifop-p-buthyl + fomesafen (160+200g ha-1), present in the soils yellow Argisoil (YA) and yellow Latosol (YL), in the increase of pumpkin, cucumber, maize and passion fruit, used as test plant. It was not verified difference in relation to dry matter of the aerial part of test plant in the same soil, the same was verified to dry matter of the root, excepted passion fruit in La. Independently of the analyzed soils, the herbicide residues present in the substrate resulted in reduction of germinated broadleaved weed, without reducing the total number of weed

    Imazapyr root exudation from eucalypt seedlings cultivated in nutritive solution Exsudação radicular de imazapyr por mudas de eucalipto cultivadas em solução nutritiva

    Get PDF
    Imazapyr has been used in Brazilian eucalypt cultivation for the maintenance of clearings and coppicing control in areas undergoing stand reform. However, inquiries have been made as to the final fate of the molecule. Imazapyr root exudation in eucalypt plants was evaluated through a bioassay under greenhouse conditions, by applying different herbicide doses (0.000, 0.375, 0.750, 1.125, and 1.500 kg ha-1 a.i.) on Eucalyptus grandis seedlings derived from vegetative propagation, hydroponically cultivated in 2.500 ml vases. Forty-day-old seedlings of the same clone were used as bioindicators, transplanted to the vases two days after herbicide application. After a period of 13 days of coexistence, the sprayed plants were removed and discarded; ten days later, the visual symptoms of toxicity were evaluated and the total dry biomass (aerial part and roots) of the bioindicators were determined. The lowest herbicide dose (0.375 kg ha-1 a.i.) affected the total biomass and growth, being most evident in the aerial part, with larger I50 for root dry biomass. The E. grandis seedlings exuded imazapyr, and/or its metabolites, in concentrations capable of affecting the growth of plants of the same species.<br>Na eucaliptocultura brasileira, vem-se utilizando o imazapyr para manutenção de aceiros e erradicação de cepas e brotações em áreas de reforma dos povoamentos. Entretanto, têm sido levantadas indagações quanto ao destino final da molécula. A exsudação radicular de imazapyr em plantas de eucalipto foi avaliada por meio de bioensaios em casa de vegetação, aplicando-se diferentes doses do herbicida (0,000; 0,375; 0,750; 1,125; e 1,500 kg ha-1 i.a.) sobre mudas de Eucalyptus grandis, provenientes de propagação vegetativa e cultivadas em sistema hidropônico, em vasos de 2.500 mL. Como bioindicador, empregaram-se mudas do mesmo clone com 40 dias de idade, as quais foram transplantadas para os vasos dois dias após a aplicação do herbicida. Depois de um período de 13 dias de convivência, retiraram-se as plantas que receberam a aplicação, descartando-as; 10 dias após, foram avaliados os sintomas visuais de toxicidade e determinadas as biomassas secas de parte aérea e raízes das mudas do bioindicador. A menor dose do herbicida (0,375 kg ha-1 i.a.) afetou o crescimento e a produção de biomassa total, sendo mais pronunciado na parte aérea, com maior valor de I50 na biomassa seca de raiz. As mudas de E. grandis exsudam o imazapyr e, ou, seus metabólitos, em concentrações capazes de afetar o crescimento de plantas da mesma espécie

    Antibody Response to the SARS-CoV-2 Spike and Nucleocapsid Proteins in Patients with Different COVID-19 Clinical Profiles

    No full text
    The first case of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in Brazil was diagnosed on February 26, 2020. Due to the important epidemiological impact of COVID-19, the present study aimed to analyze the specificity of IgG antibody responses to the S1, S2 and N proteins of SARS-CoV-2 in different COVID-19 clinical profiles. This study enrolled 136 individuals who were diagnosed with or without COVID-19 based on clinical findings and laboratory results and classified as asymptomatic or as having mild, moderate or severe disease. Data collection was performed through a semistructured questionnaire to obtain demographic information and main clinical manifestations. IgG antibody responses to the S1 and S2 subunits of the spike (S) protein and the nucleocapsid (N) protein were evaluated using an enzyme-linked immunosorbent assay (ELISA) according to the manufacturer’s instructions. The results showed that among the participants, 87.5% (119/136) exhibited IgG responses to the S1 subunit and 88.25% (120/136) to N. Conversely, only 14.44% of the subjects (21/136) displayed S2 subunit responses. When analyzing the IgG antibody response while considering the different proteins of the virus, patients with severe disease had significantly higher antibody responses to N and S1 than asymptomatic individuals (p ≤ 0.0001), whereas most of the participants had low antibody titers against the S2 subunit. In addition, individuals with long COVID-19 showed a greater IgG response profile than those with symptomatology of a short duration. Based on the results of this study, it is concluded that levels of IgG antibodies may be related to the clinical evolution of COVID-19, with high levels of IgG antibodies against S1 and N in severe cases and in individuals with long COVID-19

    Antibody response to the SARS-CoV-2 spike and nucleocapsid proteins in patients with different COVID-19 clinical profiles

    No full text
    National Council for Scientific and Technological Development (CNPQ #401235/2020-3; #302935/2021-5), Fundação Amazônia de Amparo a Estudos e Pesquisa do Pará (FAPESPA #005/2020 and #006/2020) and Secretaria de Ciência, Tecnologia e Educação Superior, Profissional e Tecnológica (SECTET #09/2021)Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Virologia. Belém, PA, Brazil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Virologia. Belém, PA, Brazil / Universidade Federal do Pará. Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários. Belém, PA, Brazil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Virologia. Belém, PA, Brazil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Genética de Doenças Complexas. Belém, PA, Brazil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Genética de Doenças Complexas. Belém, PA, Brazil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Genética de Doenças Complexas. Belém, PA, Brazil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Genética de Doenças Complexas. Belém, PA, Brazil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Genética de Doenças Complexas. Belém, PA, Brazil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Genética de Doenças Complexas. Belém, PA, Brazil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Genética de Doenças Complexas. Belém, PA, Brazil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Genética de Doenças Complexas. Belém, PA, Brazil.Hospital Adventista de Belém. Belém, PA, Brazil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Virologia. Belém, PA, Brazil / Universidade Federal do Pará. Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários. Belém, PA, Brazil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Virologia. Belém, PA, Brazil / Universidade Federal do Pará. Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários. Belém, PA, Brazil.Universidade Federal do Pará. Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários. Belém, PA, Brazil / Universidade do Estado do Pará. Centro de Ciências Biológicas e da Saúde. Belém, PA, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Universidade Federal do Pará. Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários. Belém, PA, Brazil / Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Universidade do Estado do Pará. Centro de Ciências Biológicas e da Saúde. Belém, PA, Brazil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Genética de Doenças Complexas. Belém, PA, Brazil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Virologia. Belém, PA, Brazil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Laboratório de Virologia. Belém, PA, Brazil / Universidade Federal do Pará. Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários. Belém, PA, Brazil.The first case of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in Brazil was diagnosed on February 26, 2020. Due to the important epidemiological impact of COVID-19, the present study aimed to analyze the specificity of IgG antibody responses to the S1, S2 and N proteins of SARS-CoV-2 in different COVID-19 clinical profiles. This study enrolled 136 individuals who were diagnosed with or without COVID-19 based on clinical findings and laboratory results and classified as asymptomatic or as having mild, moderate or severe disease. Data collection was performed through a semistructured questionnaire to obtain demographic information and main clinical manifestations. IgG antibody responses to the S1 and S2 subunits of the spike (S) protein and the nucleocapsid (N) protein were evaluated using an enzyme-linked immunosorbent assay (ELISA) according to the manufacturer’s instructions. The results showed that among the participants, 87.5% (119/136) exhibited IgG responses to the S1 subunit and 88.25% (120/136) to N. Conversely, only 14.44% of the subjects (21/136) displayed S2 subunit responses. When analyzing the IgG antibody response while considering the different proteins of the virus, patients with severe disease had significantly higher antibody responses to N and S1 than asymptomatic individuals (p ≤ 0.0001), whereas most of the participants had low antibody titers against the S2 subunit. In addition, individuals with long COVID-19 showed a greater IgG response profile than those with symptomatology of a short duration. Based on the results of this study, it is concluded that levels of IgG antibodies may be related to the clinical evolution of COVID-19, with high levels of IgG antibodies against S1 and N in severe cases and in individuals with long COVID-19

    Thrombophilia and immune-related genetic markers in long COVID

    No full text
    Secretary of Science, Technology and Higher, Professional and Technological Education of the State of Pará (SECTET #09/2021), Amazon Foundation for Research Support (FAPESPA)—#006/2020 and #060/2020, The Coordination for the Improvement of Higher Education Personnel (CAPES), National Council for Scientific and Technological Development (CNPQ)—#401235/2020-3.Federal University of Pará. Institute of Biological Sciences. Laboratory of Genetics of Complex Diseases. Belém, PA, Brazil / Federal University of Pará. Graduate Program in Biology of Infectious and Parasitic Agents. Belém, PA, Brazil.Federal University of Pará. Institute of Biological Sciences. Laboratory of Genetics of Complex Diseases. Belém, PA, Brazil / Federal University of Pará. Graduate Program in Biology of Infectious and Parasitic Agents. Belém, PA, Brazil.Federal University of Pará. Institute of Biological Sciences. Laboratory of Genetics of Complex Diseases. Belém, PA, Brazil / Federal University of Pará. Graduate Program in Biology of Infectious and Parasitic Agents. Belém, PA, Brazil.Federal University of Pará. Institute of Biological Sciences. Laboratory of Genetics of Complex Diseases. Belém, PA, Brazil / Federal University of Pará. Graduate Program in Biology of Infectious and Parasitic Agents. Belém, PA, Brazil.Federal University of Pará. Institute of Biological Sciences. Laboratory of Genetics of Complex Diseases. Belém, PA, Brazil / Federal University of Pará. Graduate Program in Biology of Infectious and Parasitic Agents. Belém, PA, Brazil.Federal University of Pará. Institute of Biological Sciences. Laboratory of Genetics of Complex Diseases. Belém, PA, Brazil / Federal University of Pará. Graduate Program in Biology of Infectious and Parasitic Agents. Belém, PA, Brazil.Federal University of Pará. Institute of Biological Sciences. Laboratory of Genetics of Complex Diseases. Belém, PA, Brazil / Federal University of Pará. Graduate Program in Biology of Infectious and Parasitic Agents. Belém, PA, Brazil.Federal University of Pará. Institute of Biological Sciences. Laboratory of Genetics of Complex Diseases. Belém, PA, Brazil / Federal University of Pará. Graduate Program in Biology of Infectious and Parasitic Agents. Belém, PA, Brazil.Federal University of Pará. Institute of Biological Sciences. Laboratory of Genetics of Complex Diseases. Belém, PA, Brazil / Federal University of Pará. Graduate Program in Clinical Analysis. Belém, PA, Brazil.Federal University of Pará. Institute of Biological Sciences. Laboratory of Genetics of Complex Diseases. Belém, PA, Brazil / Federal University of Pará. Graduate Program in Clinical Analysis. Belém, PA, Brazil.Federal University of Pará. Graduate Program in Biology of Infectious and Parasitic Agents. Belém, PA, Brazil / Federal University of Pará. Institute of Biological Sciences. Laboratory of Virology. Belém, PA, Brazil.Federal University of Pará. Graduate Program in Biology of Infectious and Parasitic Agents. Belém, PA, Brazil / Federal University of Pará. Institute of Biological Sciences. Laboratory of Virology. Belém, PA, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Federal University of Pará. Graduate Program in Biology of Infectious and Parasitic Agents. Belém, PA, Brazil / Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Laboratório de Pesquisa Básica da Malária. Ananindeua, PA, Brasil.Federal University of Pará. Graduate Program in Biology of Infectious and Parasitic Agents. Belém, PA, Brazil / State University of Pará. Center for Biological and Health Sciences. Belém, PA, Brazil.State University of Pará. Center for Biological and Health Sciences. Belém, PA, Brazil.Federal University of Pará. Graduate Program in Biology of Infectious and Parasitic Agents. Belém, PA, Brazil / Federal University of Pará. Institute of Biological Sciences. Laboratory of Virology. Belém, PA, Brazil.Federal University of Pará. Institute of Biological Sciences. Laboratory of Genetics of Complex Diseases. Belém, PA, Brazil / Federal University of Pará. Graduate Program in Biology of Infectious and Parasitic Agents. Belém, PA, Brazil / Federal University of Pará. Graduate Program in Clinical Analysis. Belém, PA, Brazil.Aiming to evaluate the role of ten functional polymorphisms in long COVID, involved in major inflammatory, immune response and thrombophilia pathways, a cross-sectional sample composed of 199 long COVID (LC) patients and a cohort composed of 79 COVID-19 patients whose follow-up by over six months did not reveal any evidence of long COVID (NLC) were investigated to detect genetic susceptibility to long COVID. Ten functional polymorphisms located in thrombophilia-related and immune response genes were genotyped by real time PCR. In terms of clinical outcomes, LC patients presented higher prevalence of heart disease as preexistent comorbidity. In general, the proportions of symptoms in acute phase of the disease were higher among LC patients. The genotype AA of the interferon gamma (IFNG) gene was observed in higher frequency among LC patients (60%; p = 0.033). Moreover, the genotype CC of the methylenetetrahydrofolate reductase (MTHFR) gene was also more frequent among LC patients (49%; p = 0.045). Additionally, the frequencies of LC symptoms were higher among carriers of IFNG genotypes AA than among non-AA genotypes (Z = 5.08; p < 0.0001). Two polymorphisms were associated with LC in both inflammatory and thrombophilia pathways, thus reinforcing their role in LC. The higher frequencies of acute phase symptoms among LC and higher frequency of underlying comorbidities might suggest that acute disease severity and the triggering of preexisting condition may play a role in LC development
    corecore