25,724 research outputs found

    Effect of nonadiabatic switching of dynamic perturbations in 1d Fermi systems

    Get PDF
    We study a two-dimensional fermionic QFT used to model 1D strongly correlated electrons in the presence of a time-dependent impurity that drives the system out of equilibrium. In contrast to previous investigations, we consider a dynamic barrier switched on at a finite time. We compute the total energy density (TED) of the system and establish two well defined regimes in terms of the relationship between the frequency of the time-dependent perturbation Ω\Omega and the electron energy ω\omega. Finally, we derive a relaxation time tRt_{R} such that for times shorter than tRt_{R} the finite-time switching process is relevant.Comment: 9 pages, 4 figures. Changed title. Added comments on backscattering. Added result for electrical current. Version accepted in PR

    Geometrical approach to tumor growth

    Full text link
    Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells/particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former article [C. Escudero, Phys. Rev. E 73, 020902(R) (2006)], and in the present work we extend our analysis and try to shed light on the possible geometrical principles that drive tumor growth. We present two-dimensional models that reproduce the experimental observations, and analyse the unexplored three-dimensional case, for which new conclusions on tumor growth are derived

    Cosmology with Varying Constants

    Full text link
    The idea of possible time or space variations of the `fundamental' constants of nature, although not new, is only now beginning to be actively considered by large numbers of researchers in the particle physics, cosmology and astrophysics communities. This revival is mostly due to the claims of possible detection of such variations, in various different contexts and by several groups. Here, I present the current theoretical motivations and expectations for such variations, review the current observational status, and discuss the impact of a possible confirmation of these results in our views of cosmology and physics as a whole.Comment: 14 pages, no figures. Essay to appear in Phil. Trans. Roy. Soc. Lond. A Triennial Series (Christmas 2002 Issue

    Shock wave study and theoretical modeling of the thermal decomposition of c-C4F8

    Get PDF
    The thermal dissociation of octafluorocyclobutane, c-C4F8, was studied in shock waves over the range 1150-2300 K by recording UV absorption signals of CF2. It was found that the primary reaction nearly exclusively produces 2 C2F4 which afterwards decomposes to 4 CF2. A primary reaction leading to CF2 + C3F6 is not detected (an upper limit to the yield of the latter channel was found to be about 10 percent). The temperature range of earlier single pulse shock wave experiments was extended. The reaction was shown to be close to its high pressure limit. Combining high and low temperature results leads to a rate constant for the primary dissociation of k1 = 1015.97 exp(-310.5 kJ mol-1/RT) s-1 in the range 630-1330 K, over which k1 varies over nearly 14 orders of magnitude. Calculations of the energetics of the reaction pathway and the rate constants support the conclusions from the experiments. Also they shed light on the role of the 1,4-biradical CF2CF2CF2CF2 as an intermediate of the reaction.Fil: Cobos, Carlos Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Hintzer, K.. Dyneon Gmbh; AlemaniaFil: Sölter, L.. Universität Göttingen; AlemaniaFil: Tellbach, E.. Universität Göttingen; AlemaniaFil: Thaler, A.. Dyneon Gmbh; AlemaniaFil: Troe, J.. Universität Göttingen; Alemania. Max-Planck-Institut fu¨r biophysikalische Chemie; Alemani

    Humidity contribution to C_n^2 over a 600m pathlength in a tropical marine environment

    Get PDF
    We present new optical turbulence structure parameter measurements, C_n^2, over sea water between La Parguera and Magueyes Island (17.6N 67W) on the southwest coast of Puerto Rico. The 600 meter horizontal paths were located approximately 1.5 m and 10 m above sea level. No data of this type has ever been made available in the literature. Based on the data, we show that the C_n^2 measurements are about 7 times less compared to equivalent land data. This strong evidence reinforces our previous argument that humidity must be accounted for to better ascertain the near surface atmospheric turbulence effects, which current visible / near infrared C_n^2 bulk models fail to do. We also explore the generalised fractal dimension of this littoral data and compare it to our reference land data. We find cases that exhibit monofractal characteristics, that is to say, the effect of rising temperatures during the daylight hours upon turbulence are counterbalanced by humidity, leading to a single characteristic scale for the measurements. In other words, significant moisture changes in the measurement volume cancels optical turbulence increases due to temperature rises. Figures available as JPG only.Comment: 7 pages, 4 figures, 1 table, SPIE Photonics West 2007, paper 6457B-2

    Supergraph Approach in a Higher-order LDE Calculation of the Effective Potential for F-type Broken SUSY

    Full text link
    In this work, we adopt the simplest model that spontaneously breaks supersymmetry, namely, the minimal O'Raifeartaigh model. The effective potential is computed in the framework of the linear delta expansion (LDE) approach up to the order δ2\delta^2, conjugated with superspace and supergraph techniques. The latter can be duly mastered even if supersymmetry is no longer exact and the efficacy of the superfield approach in connection with the LDE procedure is confirmed according to our investigation. That opens up a way for a semi-nonperturbative superspace computation which allows us to deal with spontaneously broken supersymmetric models and encourages us to go further and apply this treatment to the Minimal Supersymmetric Standard Model (MSSM) precision tests.Comment: 42 pages, 22 figures, text modified, new paragraph added in the conclusions, revtex
    • …
    corecore