12 research outputs found

    Factors influencing terrestriality in primates of the Americas and Madagascar

    Get PDF
    Among mammals, the order Primates is exceptional in having a high taxonomic richness in which the taxa are arboreal, semiterrestrial, or terrestrial. Although habitual terrestriality is pervasive among the apes and African and Asian monkeys (catarrhines), it is largely absent among monkeys of the Americas (platyrrhines), as well as galagos, lemurs, and lorises (strepsirrhines), which are mostly arboreal. Numerous ecological drivers and species-specific factors are suggested to set the conditions for an evolutionary shift from arboreality to terrestriality, and current environmental conditions may provide analogous scenarios to those transitional periods. Therefore, we investigated predominantly arboreal, diurnal primate genera from the Americas and Madagascar that lack fully terrestrial taxa, to determine whether ecological drivers (habitat canopy cover, predation risk, maximum temperature, precipitation, primate species richness, human population density, and distance to roads) or species-specific traits (bodymass, group size, and degree of frugivory) associate with increased terrestriality. We collated 150,961 observation hours across 2,227 months from 47 species at 20 sites in Madagascar and 48 sites in the Americas. Multiple factors were associated with ground use in these otherwise arboreal species, including increased temperature, a decrease in canopy cover, a dietary shift away from frugivory, and larger group size. These factors mostly explain intraspecific differences in terrestriality. As humanity modifies habitats and causes climate change, our results suggest that species already inhabiting hot, sparsely canopied sites, and exhibiting more generalized diets, are more likely to shift toward greater ground use

    Factors influencing terrestriality in primates of the Americas and Madagascar

    Get PDF
    Among mammals, the order Primates is exceptional in having a high taxonomic richness in which the taxa are arboreal, semiterrestrial, or terrestrial. Although habitual terrestriality is pervasive among the apes and African and Asian monkeys (catarrhines), it is largely absent among monkeys of the Americas (platyrrhines), as well as galagos, lemurs, and lorises (strepsirrhines), which are mostly arboreal. Numerous ecological drivers and species-specific factors are suggested to set the conditions for an evolutionary shift from arboreality to terrestriality, and current environmental conditions may provide analogous scenarios to those transitional periods. Therefore, we investigated predominantly arboreal, diurnal primate genera from the Americas and Madagascar that lack fully terrestrial taxa, to determine whether ecological drivers (habitat canopy cover, predation risk, maximum temperature, precipitation, primate species richness, human population density, and distance to roads) or species-specific traits (body mass, group size, and degree of frugivory) associate with increased terrestriality. We collated 150,961 observation hours across 2,227 months from 47 species at 20 sites in Madagascar and 48 sites in the Americas. Multiple factors were associated with ground use in these otherwise arboreal species, including increased temperature, a decrease in canopy cover, a dietary shift away from frugivory, and larger group size. These factors mostly explain intraspecific differences in terrestriality. As humanity modifies habitats and causes climate change, our results suggest that species already inhabiting hot, sparsely canopied sites, and exhibiting more generalized diets, are more likely to shift toward greater ground use

    A morphological and molecular study of Pseudocorynosoma Aznar, Pérez Ponce de León and Raga 2006 (Acanthocephala: Polymorphidae) from Mexico with the description of a new species and the presence of cox 1 pseudogenes

    No full text
    Pseudocorynosoma tepehuanesi n. sp., is described from the intestine of the ruddy duck Oxyura jamaicensis Gmelin, 1789 from single locality from northern Mexico. The new species is mainly distinguished morphologically from the other five described species of Pseudocorynosoma from the Americas (P. constrictum, type species, P. peposacae, P. anatarium, P. enrietti and P. iheringi) associated with waterfowl species by possessing a proboscis with 15 longitudinal rows with 7–8 hooks each, a trunk expanded anteriorly and by having smaller lemniscus. Partial sequences of the mitochondrial gene cytochrome c oxidase subunit I (cox 1) and the large subunit (LSU) of ribosomal DNA including the domains D2 + D3 were used independently to corroborate the morphological distinction between the new species and other two congeneric species (P. constrictum and P. anatarium) from North America. The genetic divergence estimated among the new species and the other two species ranged from 15 to 18% for cox 1 and from 3.2 to 4% for LSU. The cox 1 alignment shows 24 sequences from P. anatarium with abnormalities, which were defined as pseudogenes due the presence of insertions, deletions and premature stop codons. Maximum likelihood and Bayesian inference analyses with each data set showed that the acanthocephalans from ruddy duck represent an independent clade with strong bootstrap support and posterior probabilities. The phylogenetic tree inferred with cox 1 gene placed all the pseudogenes from P. anatarium in single clade suggesting that those genes arose after speciation process within genus Pseudocorynosoma. The morphological evidence, plus the monophyly in both phylogenetic analyses indicate that the acanthocephalans collected from intestine of the ruddy duck from northern Mexico represent a new species.Fil: García Varela, Martín. Universidad Nacional Autónoma de México; MéxicoFil: Hernández Orts, Jesús Servando. Universidad Nacional del Comahue. Instituto de Biología Marina y Pesquera Almirante Storni; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pinacho Pinacho, Carlos D.. Universidad Nacional Autónoma de México; México. Universidad de la Sierra Sur; Méxic

    Novel morphological and molecular data for Corynosoma hannae Zdzitowiecki, 1984 (Acanthocephala: Polymorphidae) from teleosts, fish-eating birds and pinnipeds from New Zealand

    No full text
    The polymorphid acanthocephalan, Corynosoma hannae Zdzitowiecki, 1984 is characterised on the basis of newly collected material from a New Zealand sea lion, Phocarctos hookeri (Gray), and long-nosed fur seal, Arctophoca forsteri (Lesson) (definitive hosts), and from Stewart Island shags, Leucocarbo chalconotus (Gray), spotted shags, Phalacrocorax punctatus (Sparrman) and yellow-eyed penguins, Megadyptes antipodes (Hombron & Jacquinot) (non-definitive hosts) from New Zealand. Specimens are described in detail and scanning electron micrographs for C. hannae are provided. Additionally, cystacanths of C. hannae are reported and described for the first time from the body cavity and mesenteries of New Zealand brill, Colistium guntheri (Hutton) and from New Zealand sole, Peltorhamphus novaezeelandiae Günther from Kaka Point, Otago in New Zealand. Partial sequence data for the mitochondrial cytochrome c oxidase 1 gene (cox1) for adults, immature specimens and cystacanths of C. hannae were obtained. Phylogenetic analyses of the newly-generated sequences and for available cox1 sequences of Corynosoma spp. revealed a close relationship between C. hannae and C. australe Johnston, 1937, both species infecting pinnipeds in the Southern Hemisphere. However, a morphological comparison of the species suggests that C. hannae mostly closely resembles C. evae Zdzitowiecki, 1984 and C. semerme (Forssell, 1904), the latter of which occurs in pinnipeds in the Northern Hemisphere.Fil: Hernández Orts, Jesús Servando. Universidad Nacional del Comahue. Instituto de Biología Marina y Pesquera Almirante Storni; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Smales, Lesley R.. South Australian Museum; AustraliaFil: Pinacho Pinacho, Carlos D.. Universidad Nacional Autónoma de México; MéxicoFil: García Varela, Martín. Universidad Nacional Autónoma de México; MéxicoFil: Presswell, Bronwen. University Of Otago; Canad

    Mayarhynchus karlae n. g., n. sp. (Acanthocephala: Neoechinorhynchidae), a parasite of cichlids (Perciformes: Cichlidae) in southeastern Mexico, with comments on the paraphyly of Neoechynorhynchus Stiles & Hassall, 1905

    No full text
    Mayarhynchus n. g. (Acanthocephala: Neoechinorhynchidae) is erected for Mayarhynchus karlae n. g, n. sp. described from the intestine of four species of cichlid fishes distributed from southeastern Mexico. The new genus placed in the family Neoechinorhynchidae (Ward, 1917) Van Cleave, 1928, is readily distinguished from the other 17 genera in the family by having a small proboscis armed with 45–46 relatively weak rooted hooks arranged in nine longitudinal rows of five hooks each. In addition, Mayarhynchus n. g., n. sp. is diagnosed by the presence of a short trunk, body wall with five dorsal and one ventral giant hypodermal nuclei, proboscis receptacle nearly cylindrical with single layered wall, lemnisci broad and flat with large nuclei, testes in tandem, cement gland with eight large nuclei, and eggs elongate to oval. Partial sequences of the cytochrome c oxidase subunit 1 (cox1), internal transcribed spacers (ITS1 + 5.8S + ITS2), and the D2-D3 domains of the large subunit rRNA gene (28S) were obtained for five specimens of the new species and other species belonging to the Neoechinorhynchidae. Phylogenetic analyses confirmed that the new genus belongs to the Neoechynorhynchidae and indicated that the genus Neoechynorhynchus Stiles & Hassall, 1905 is not monophyletic. Comparison between three populations of the new species yielded nine variable sites for cox1, 11 for ITS and four for 28S.Fil: Pinacho Pinacho, Carlos D.. Universidad de la Sierra Sur; MéxicoFil: Hernández Orts, Jesús Servando. Universidad Nacional del Comahue. Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos "Almirante Storni". - Provincia de Río Negro. Ministerio de Agricultura, Ganadería y Pesca. Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos "Almirante Storni". - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos "Almirante Storni"; ArgentinaFil: Sereno Uribe, Ana L.. Universidad Nacional Autónoma de México; MéxicoFil: Pérez Ponce de León, Gerardo. Universidad Nacional Autónoma de México; MéxicoFil: García Varela, Martín. Universidad Nacional Autónoma de México; Méxic
    corecore