272 research outputs found

    AIDI: An adaptive image denoising FPGA-based IP-core for real-time applications

    Get PDF
    The presence of noise in images can significantly impact the performances of digital image processing and computer vision algorithms. Thus, it should be removed to improve the robustness of the entire processing flow. The noise estimation in an image is also a key factor, since, to be more effective, algorithms and denoising filters should be tuned to the actual level of noise. Moreover, the complexity of these algorithms brings a new challenge in real-time image processing applications, requiring high computing capacity. In this context, hardware acceleration is crucial, and Field Programmable Gate Arrays (FPGAs) best fit the growing demand of computational capabilities. This paper presents an Adaptive Image Denoising IP-core (AIDI) for real-time applications. The core first estimates the level of noise in the input image, then applies an adaptive Gaussian smoothing filter to remove the estimated noise. The filtering parameters are computed on-the-fly, adapting them to the level of noise in the image, and pixel by pixel, to preserve image information (e.g., edges or corners). The FPGA-based architecture is presented, highlighting its improvements w.r.t. a standard static filtering approac

    A novel algorithm and hardware architecture for fast video-based shape reconstruction of space debris

    Get PDF
    In order to enable the non-cooperative rendezvous, capture, and removal of large space debris, automatic recognition of the target is needed. Video-based techniques are the most suitable in the strict context of space missions, where low-energy consumption is fundamental, and sensors should be passive in order to avoid any possible damage to external objects as well as to the chaser satellite. This paper presents a novel fast shape-from-shading (SfS) algorithm and a field-programmable gate array (FPGA)-based system hardware architecture for video-based shape reconstruction of space debris. The FPGA-based architecture, equipped with a pair of cameras, includes a fast image pre-processing module, a core implementing a feature-based stereo-vision approach, and a processor that executes the novel SfS algorithm. Experimental results show the limited amount of logic resources needed to implement the proposed architecture, and the timing improvements with respect to other state-of-the-art SfS methods. The remaining resources available in the FPGA device can be exploited to integrate other vision-based techniques to improve the comprehension of debris model, allowing a fast evaluation of associated kinematics in order to select the most appropriate approach for capture of the target space debris

    SA-FEMIP: A Self-Adaptive Features Extractor and Matcher IP-Core Based on Partially Reconfigurable FPGAs for Space Applications

    Get PDF
    Video-based navigation (VBN) is increasingly used in space applications to enable autonomous entry, descent, and landing of aircrafts. VBN algorithms require real-time performances and high computational capabilities, especially to perform features extraction and matching (FEM). In this context, field-programmable gate arrays (FPGAs) can be employed as efficient hardware accelerators. This paper proposes an improved FPGA-based FEM module. Online self-adaptation of the parameters of both the image noise filter and the features extraction algorithm is adopted to improve the algorithm robustness. Experimental results demonstrate the effectiveness of the proposed self-adaptive module. It introduces a marginal resource overhead and no timing performance degradation when compared with the reference state-of-the-art architecture

    SATTA: a Self-Adaptive Temperature-based TDF awareness methodology for dynamically reconfigurable FPGAs

    Get PDF
    Dependability issues due to non functional properties are emerging as major cause of faults in modern digital systems. Effective countermeasures have to be presented to properly manage their critical timing effects. This paper presents a methodology to avoid transition delay faults in FPGA-based systems, with low area overhead. The approach is able to exploit temperature information and aging characteristics to minimize the cost in terms of performances degradation and power consumption. The architecture of a hardware manager able to avoid delay faults is presented and deeply analyzed, as well as its integration in the standard implementation design flow

    An improved fault mitigation strategy for CUDA Fermi GPUs

    Get PDF
    High computation is a predominant requirement in many applications. In this field, Graphic Processing Units (GPUs) are more and more adopted. Low prices and high parallelism let GPUs be attractive, even in safety critical applications. Nonetheless, new methodologies must be studied and developed to increase the dependability of GPUs. This paper presents an improved fault mitigation strategy against permanent faults for CUDA Fermi GPUs. The proposed approach exploits the reverse engineering of the block scheduling policy in CUDA Fermi GPUs in order to minimize the fault mitigation timing overhead. The graceful performance degradation achieved by the proposed technique outperforms multithreaded CPU implementations and other fault mitigation strategies for CUDA GPU, even in presence of multiple permanent faults

    Dependable Dynamic Partial Reconfiguration with minimal area & time overheads on Xilinx FPGAS

    Get PDF
    Thanks to their flexibility, FPGAs are nowadays widely used to implement digital systems' prototypes and, more frequently, their final releases. Reconfiguration traditionally required an external controller to upload contents in the FPGA. Dynamic Partial Reconfiguration (DPR) opens new horizons in FPGAs' applications, providing many new utilization paradigms, as it enables an FPGA to reconfigure itself: no external controller is required since it can be included in the FPGA. However, DPR also introduces reliability issues related to errors in the partial reconfiguration bitstreams. FPGA manufacturers currently provide solutions that are not efficient. In this paper new DfD (Design for Dependability) techniques are proposed. Exploiting information density of configuration data, they improve the performance while providing the same reliability characteristics as the previous one

    FEMIP: A high performance FPGA-based features extractor & matcher for space applications

    Get PDF
    Nowadays, Video-Based Navigation (VBN) is increasingly used in space-applications. The future space-missions will include this approach during the Entry, Descent and Landing (EDL) phase, in order to increase the landing point precision. This paper presents FEMIP: a high performance FPGA-based features extractor and matcher tuned for space applications. It outperforms the current state-of-the-art, ensuring a higher throughput and a lower hardware resources usage

    SAFE: a Self Adaptive Frame Enhancer FPGA-based IP-core for real-time space applications

    Get PDF
    Video-based navigation is an increasingly used procedure with hard real-time requirements and high computational effort. In this ļ¬eld, FPGA hardware accelleration supplyes low-cost and considerable performances enhancement. The video-based navigation algorithms extrapolate and correlates features from images, relying on their accuracy. Image enhancement provides more deļ¬ned and contrasted frames, assuring high precision feature extraction. This work introduces an FPGA-based self-adaptive image enhancer. The IP-core is suitable for hard-real time applications, such as space applications, thanks to the guaranteed high-throughput

    SAFE: a Self Adaptive Frame Enhancer FPGA-based IP-core for real-time space applications

    Get PDF
    Video-based navigation is an increasingly used procedure with hard real-time requirements and high computational effort. In this ļ¬eld, FPGA hardware accelleration supplyes low-cost and considerable performances enhancement. The video-based navigation algorithms extrapolate and correlates features from images, relying on their accuracy. Image enhancement provides more deļ¬ned and contrasted frames, assuring high precision feature extraction. This work introduces an FPGA-based self-adaptive image enhancer. The IP-core is suitable for hard-real time applications, such as space applications, thanks to the guaranteed high-throughpu

    A software-based self test of CUDA Fermi GPUs

    Get PDF
    Nowadays, Graphical Processing Units (GPUs) have become increasingly popular due to their high computational power and low prices. This makes them particularly suitable for high-performance computing applications, like data elaboration and financial computation. In these fields, high efficient test methodologies are mandatory. One of the most effective ways to detect and localize hardware faults in GPUs is a Software-Based-Self-Test methodology (SBST). In this paper a fully comprehensive SBST and fault localization methodology for GPUs is presented. This novel approach exploits different custom test strategies for each component inside the GPU architecture. Such strategies guarantee both permanent fault detection and accurate fault localization
    • ā€¦
    corecore