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A novel algorithm and hardware architecture
for fast video-based shape reconstruction of
space debris
Stefano Di Carlo*, Paolo Prinetto, Daniele Rolfo, Nicola Sansonne and Pascal Trotta

Abstract

In order to enable the non-cooperative rendezvous, capture, and removal of large space debris, automatic recognition
of the target is needed. Video-based techniques are the most suitable in the strict context of space missions, where
low-energy consumption is fundamental, and sensors should be passive in order to avoid any possible damage to
external objects as well as to the chaser satellite.
This paper presents a novel fast shape-from-shading (SfS) algorithm and a field-programmable gate array
(FPGA)-based system hardware architecture for video-based shape reconstruction of space debris. The FPGA-based
architecture, equipped with a pair of cameras, includes a fast image pre-processing module, a core implementing a
feature-based stereo-vision approach, and a processor that executes the novel SfS algorithm.
Experimental results show the limited amount of logic resources needed to implement the proposed architecture,
and the timing improvements with respect to other state-of-the-art SfS methods. The remaining resources available in
the FPGA device can be exploited to integrate other vision-based techniques to improve the comprehension of
debris model, allowing a fast evaluation of associated kinematics in order to select the most appropriate approach for
capture of the target space debris.

Keywords: Space debris, Active space debris removal, Stereo vision, Image processing, Features extraction, Shape
from shading, FPGA, Hardware acceleration

Introduction
The challenge of removal of large space debris, such as
spent launcher upper stages or satellites having reached
the end of their lifetime, in low, medium, and geostation-
ary earth orbits, is already well-known. It is recognized
by the most important space agencies and industries as
a necessary step to make appreciable progresses towards
a cleaner and safer space environment [1,2]. This is a
mandatory condition for making future space-flight activ-
ities safe and feasible in terms of risks.
Space debris, defined as non-functional objects or frag-

ments rotating around or falling on the earth [3], are
becoming a critical issue. Several studies and analyses
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have been funded in order to identify the most appropri-
ated approach for their removal. Recent studies demon-
strated that the capability to remove existing space debris,
over preventing the creation of new ones, is necessary to
invert the growing trend in the number of debris that lie
in orbits around the earth. Nowadays, the focus is on a
specific space debris, weighting about 2 tons and span-
ning about 10 meters [4]. This class of orbiting debris is
the most dangerous for aircrafts and satellites, represent-
ing a threat to manned and unmanned spacecrafts, as well
as a hazard on earth because large-sized objects can reach
the ground without burning up in the atmosphere. In case
of collision, thousands of small fragments can potentially
be created or even worst, they can trigger the Kessler syn-
drome [5]. An example of this class of debris is the lower
stage of solid rocket boosters, such as the third stage of
Ariane 4, the H10 module, usually left from European
Space Agency (ESA) as space orbiting debris [6,7].
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In general, the procedure for removing a space debris
consists of three steps. The first phase is the debris detec-
tion and characterization, in terms of size, shape profile,
material identification, and kinematics. The second phase,
called non-collaborative rendezvous, exploits the informa-
tion gathered from the first phase in order to identify the
best approach (e.g., trajectory) to capture the identified
debris. Finally, in the capture and removal phase, depend-
ing on the on-board functionalities of the chaser satellite,
the debris is actually grappled and de-orbited from its
position [8,9].
The work presented in this paper is related to the first

phase of the debris removal mission. In order to collect
the required information about the object to be removed,
three main operations must be performed: (i) the debris
three-dimensional shape reconstruction, (ii) the defini-
tion of the structure of the object to be removed and
the identification of the composing material, and (iii) the
computation of the kinematic model of the debris. In
particular this paper focuses on the first of these three
phases.
Since space applications impose several constraints

regarding allowed equipments, in terms of size, weight,
and power consumption, many devices commonly used
for three-dimensional (3D) object shape reconstruction
cannot be used when dealing with space debris removal
(e.g., laser scanners [10] and LIDARs [11]). Moreover, the
chosen device should be passive, not only for power con-
straints, but also because passive components are more
robust against damages caused by unforeseen scattering
of laser light.
Digital cameras, acquiring visible wavelengths, are suit-

able for space missions since they provide limited size,
weight, and lower power consumption with respect to
active devices. Either based on CCD or CMOS technol-
ogy, digital cameras can be used for 3D shape recon-
struction exploiting several techniques. For example, a
stereo-vision system can be developed, making use of a
pair of identical cameras fixed on a well-designed support.
However, its limitations arise when the object to be

captured is monochromatic and texture-less [12]. Since
several types of space debris fall into this category,
shape-from-shading algorithms that work by exploit-
ing pixel intensities in a single image [13], combined
to stereo-vision, could represent an efficient solution
[14-16]. Moreover, in this type of missions, high per-
formances are required to maximize the throughput of
processed frames that enables an increase of the extracted
information and, consequently, the accuracy of the recon-
structed shape models. Moreover, thanks to the high pro-
cessing rate, the system can quickly react depending on
the extracted information.
Since image processing algorithms are very compu-

tational intensive, a software implementation of these

algorithms running on a modern fault-tolerant space-
qualified processor (e.g., LEON3-FT [17]) cannot achieve
the required performances. In this context, hard-
ware acceleration is crucial and devices such as field-
programmable gate arrays (FPGAs) best fit the demand of
computational capabilities. In addition, a current trend is
to replace application-specific integrated circuits (ASICs)
with more flexible FPGA devices, even in mission-critical
applications [18].
In [19], we presented a preliminary work on a stereo-

vision system architecture suitable for space debris
removal missions, based on a FPGA device, including
tightly coupled programmable logic and a dual-core pro-
cessor. In this paper, we improve the work presented
in [19] by proposing a novel fast shape- from-shading
algorithm, and a system architecture that includes: (i)
hardware accelerated modules, implementing the image
pre-processing (i.e., image noise filtering and equaliza-
tion) and the feature-based stereo-vision, and (ii) a proces-
sor running the proposed novel shape-from-shading (SfS)
algorithm. In order to combine and improve SfS results
with information extracted by the stereo-vision hardware,
other vision-based algorithms routines can be integrated
in this hardware architecture.
In the next sections, we first summarize the state

of the art about 3D video-based shape reconstruction
techniques, including stereo-vision and SfS approaches,
and their related hardware implementations. Then, the
novel fast SfS algorithm and the proposed system hard-
ware architecture are detailed. Afterwards, experimental
results are reported and, eventually, in the last section,
the contributions of the paper are summarized, proposing
future works and improvements.

Related works
In the last years, the interest in creation of virtual worlds
based on reconstruction of contents from real world
objects and scenes increased more and more. Nowadays,
stereo-vision techniques are the most used when dealing
with 3D video-based shape reconstruction. These tech-
niques mimic the human visual system. They exploit two
(or more) points of view (i.e., cameras) and provide in out-
put a so-called dense map. The dense map is a data struc-
ture that reports the distance of each pixel composing the
input image from the observer.
Several steps are required to compute the dense map

of objects from a couple of images taken from different
points of view. Knowing the relative orientation between
the two cameras, the images acquired must be first rec-
tified. This first mandatory step aims at removing the
radial and tangential distortion effects due to lenses and
to align the left and right images in order to apply the
epipolar geometry [20]. It is a simple step that moves pix-
els taking them from one place in the original image and
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locating them in another position in a new rectified image.
The rectification process can be efficiently implemented
in hardware exploiting a look-up table (LUT) approach, as
proposed in [21,22].
The rectification process is essential to reduce the com-

plexity of the second task, that is the searching for cor-
respondences of pixels between the two rectified images.
In fact, by applying the epipolar geometry, the two-
dimensional matching task becomes a one-dimensional
problem, since it is sufficient to search for matching
pixels in the same lines of the two images [20]. Corre-
spondence algorithms can be classified into two basic
categories: feature-based and block-based. The former
methods extract characteristic points in the images (e.g.,
corners, edges, etc), called features, and then try to match
the extracted features between the two acquired images
[23,24]. Instead, block-based methods consider a window
centered in a pixel in one of the images and determine cor-
respondence by searching the most similar window in the
other image [25,26].
In both cases, based on the disparity between corre-

sponding features, or windows, and on stereo camera
parameters, such as the distance between the two cameras
and their focal length, one can extract the depth of the
related points in space by triangulation [27]. This infor-
mation can be used to compute the dense map, in which
points close to the camera are almost white, whereas
points far away are almost black. Points in between are
shown in grayscale.
Nowadays, the research community focused more on

block-based methods. They provide a complete, or semi-
complete, dense map, while feature-based methods only
provide depth information of some points [28].
In literature, several real-time FPGA-based hardware

implementations of stereo-vision algorithms have been
presented. As aforementioned, most of them focus on
the implementation of block-matching algorithms [28-31]
that, in general, are more complex than feature-based
algorithms, thus leading to a large resource consumption.
Moreover, even if this type of algorithms provides fast
and accurate results for a wide range of applications, they
cannot be effectively employed in the context of space
debris shape reconstruction. In fact, space debris are often
monochromatic and texture-less. In these conditions,
both feature-matching and block-matching methods fail,
since it is almost impossible to unambiguously recog-
nize similar areas or features between the two acquired
images [12].
When dealing with monochromatic and texture-less

objects, under several assumptions, SfS algorithms are the
most recommended [32]. Contrary to stereo-vision meth-
ods, SfS algorithms exploit information stored in pixel
intensities in a single image. Basically, these algorithms
deal with the recovery of shape from a gradual variation

of shading in the image, that is accomplished by inverting
the light reflectance law associated with the surface of the
object to be reconstructed [32].
Commonly, SfS algorithms assume as reflectance model

the Lambertian law [13]. In the last years, algorithms
based on other more complex reflectance laws (e.g. Phong
model andOren-Nayar model) have been proposed. How-
ever, the complexity introduced requires a high com-
putational power, leading to very low performances, in
terms of execution times. Nonetheless, the surface of
the biggest debris (e.g., Ariane H10 stage) is character-
ized by an almost uniform surface that can be effectively
modeled with the Lambertian model. For these reasons,
in the following, we will focus on the analysis of the
most important SfS algorithm based on the Lambertian
law.
These SfS algorithms can be classified in three main

categories: (i) methods of resolution of partial differen-
tial equations (PDEs), (ii) optimization-based methods,
and (iii) methods approximating the image irradiance
equation (this classification follows the one proposed in
[13] and [33]).
The first class contains all those methods that receive in

input the partial differential equation describing the SfS
model (e.g., eikonal equation [32]) and provide in output
the solution of the differential equation (i.e., the elevation
map of the input image).
The optimization-based methods include all the algo-

rithms that compute the shape by minimizing an energy
function based on some constraints on the brightness and
smoothness [13]. Basically, these algorithms iterate until
the cost function reaches the absolute minimum [34].
However, in some of these algorithms, in order to ensure
the convergence and reduce the execution time, the itera-
tions are stopped when the energy function is lower than
a fixed threshold [35], not guaranteeing accurate results.
Finally, the third class includes all the SfS methods that

make an approximation of the image irradiance equation
at each pixel composing the input image. These meth-
ods, thanks to their simplicity, allow to obtain acceptable
results, requiring a limited execution time [36].
Nevertheless, all the aforementioned SfS algorithms

present three main limitations: (i) they are very far from
real-time behaviors, (ii) their outputs represent the nor-
malized shape of the observed object with respect to the
brightness range in the input image, without providing
information on its absolute size and absolute distance
from the observer, and (iii) they create artifacts if the
surface is not completely monochromatic.
To overcome the first problem, we propose a novel fast

SfS algorithm which exploits the knowledge on the input
light direction (that is easily retrievable during space mis-
sions), with respect to the image plane, to reduce the
computational load of the shape reconstruction problem.
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On the other hand, the last two problems can be solved by
merging stereo-vision and SfS approaches. In particular,
depth data can be exploited to correct and de-normalize
the shape extracted by the SfS algorithm, in order to
increase the robustness of the entire shape reconstruction
process.
While the idea of merging sparse depth data, obtained

by the stereo-vision, with SfS output data is not new
[15,16], this paper proposes, for the first time, a compre-
hensive system hardware architecture implementing the
two orthogonal approaches.
We also improve our architecture, presented in [19],

by completely hardware accelerating the image pre-
processing and the feature-based stereo-vision algo-
rithms, in order to reach real-time performances. Instead,
to compare and highlight the timing improvements of
the proposed SfS algorithm with respect to other exist-
ing methods, we choose to run it in software on an
embedded processor, since, to the best of our knowl-
edge, no hardware implementations of SfS algorithms
are available in the literature. However, as will be
explained in the following section, the proposed SfS algo-
rithm can be also effectively and easily implemented in
hardware.

Novel fast shape-from-shading algorithm
This section describes the proposed novel fast SfS algo-
rithm, hereafter called Fast-SfS.
The basic idea of Fast-SfS is to suppose, as for the regu-

lar SfS algorithms, that the surface of the captured object
follows the rules of the Lambertian model [13]. How-
ever, a first main differentiation from the standard SfS
algorithms, concerning the light direction, is introduced.
Considering the specific space debris removal application,
the dominant source that lights the observed object is the
sun. In fact, the albedo of the earth (i.e., the percentage of
the sun light reflected by the earth surface and atmosphere
back to the space) can vary from the 0% (e.g., ocean, sea,
and bays) to 30% (e.g., clouds) [37]. Thus, also in the worst
case, the sun represents the dominant light source. Since
data concerning the actual environmental conditions in
space debris removal missions are still not available, in this
work we initially assume that the earth reflection is negli-
gible. Taking into account the data about the earth albedo,
this assumption can be considered valid, indeed the ele-
ments that provide the lower reflection factor (e.g., ocean,
sea, and bays) are also the ones that cover the major part
of the earth surface (i.e., around the 71% of the overall
earth surface [38]). Knowing the position and the orienta-
tion of the system which captures the images with respect
to the sun, it is possible to determine the mutual direc-
tion between the camera axis and the sunlight direction.
This information can be extracted by computing the atti-
tude of the spacecraft, which is provided by sun sensors

[39] or star trackers [40], that are commonly available on
spacecrafts.
A second assumption is about the light properties,

which is supposed to be perfectly diffused, since the sun
is far enough to be considered as an illumination source
situated at infinite distance. This means that sunlight rays
can be considered parallel among each other.
Given the two aforementioned assumptions, the

amount of light reflected by one point in the observed
object surface will be proportional to the angle between
the normal (n) to the tangent surface in this point and
the light direction. Thus, all points in which n is parallel
to the light direction (as (1) in Figure 1) are supposed
to be represented in the image as the ones with maxi-
mum brightness (i.e., these pixels provide the maximum
reflection). On the contrary, all points in which n is
perpendicular to the light direction (as (3a) and (3b)
in Figure 1) are represented with the minimum image
brightness (i.e., these pixels do not provide reflection).
The proposed algorithm can be summarized by the flow
diagram in Figure 2.
First, the algorithm crops the input image following the

object borders, in order to exclude the background pixels
from the following computations. Cropping is performed
by means of a single thresholding algorithm that, for each
row of the image, finds the first and the last pixel in that
row that are greater than a given threshold, representing
the background level. Moreover, Fast-SfS searches for the
minimum and the maximum brightness values inside the
cropped image.

Figure 1 Example of the light reflected by the object surface,
supposing diffused light.
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Figure 2 Flow diagram of the proposed Fast-SfS algorithm.

Then, the proposed algorithm computes the position in
the 3D space of each pixel composing the cropped image.
Considering the image surface as the x-y plane, and the
z axis as the normal to the image plane, the position of a
pixel in the 3D space is defined exploiting the associated
(x, y, z) coordinates. Obviously, the first two coordinates
(i.e., x and y) are simply provided by the position of the
pixel in the image surface. Instead, the elevation of each
pixel (i.e., z coordinate) is defined exploiting the light
direction that is provided in input as the horizontal and
vertical components. These components are provided as
the two angles between the axis z and the horizontal (i.e.,
the projection on the x-z plane) and vertical projections
(i.e., the projection on the y-z plane) of the vector rep-
resenting the light direction. For a better comprehension,
Figure 3 shows the two components of the light direction,
where αH is the component along the horizontal axis, and
αV is the one along the vertical axis.

As shown in Figure 2, the elevation of each pixel is sepa-
rately computed along the horizontal and vertical compo-
nent that are finally merged together to compute the shape
associate to the input image. This approach ensures the
reduction of complexity of the operations to be performed
and potentially allows to parallelize the computations. For
the sake of brevity, in the following, the algorithm details
are reported for the computations related to the horizon-
tal direction only. However, the same considerations are
valid for the vertical components.
The elevation of each pixel is computed in two steps

according to the reflection model previously described
(see Figure 1).
First, for each pixel, its intensity value is exploited to find

the slope of the tangent surface to the object point rep-
resented by the pixel. According to the considered light
reflection model, Figure 4 shows the case in which the
currently processed pixel (P(x,y)) is characterized by the
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Figure 3 Light direction decomposition. (a) On image horizontal
axis. (b) On image vertical axis.

maximum brightness value in the image. In this case, the
tangent surface associated to P(x,y) (S(P(x,y))) is perpen-
dicular to the light direction component (i.e., like surface
1 in Figure 1), so exploiting the similar triangle theorem,
it is possible to demonstrate that the slope (i,e., the angle
between S(P(x,y)) and the x axis, called αP(x,y)) is equal
to αH .
In the opposite case, when the considered pixel presents

the minimum brightness value, the tangent surface is par-
allel to the light direction (see Figure 5), and αP(x,y) is equal
to 90° −αH .
Considering that the pixels with the maximum bright-

ness (Imax) have an associated angle equal to αH , and
the pixels characterized by the minimum value of bright-
ness (Imin) have an associated angle equal to 90° −αH ,

Figure 4 Case in which P(x, y) has the maximum intensity value.

an αP(x,y) value can be assigned to all other pixels in the
image by linearly regressing the range [αH ; 90° − αH ] on
the pixel brightness range. Figure 6 shows the proposed
linear regression model.
According to the graph in Figure 6, the αP(x,y) value can

be computed for each pixel as:

αP(x,y) = 90° − 2 ∗ αH
Imax − Imin

∗ I(x, y) + q

Figure 5 Case in which P(x, y) has the minimum intensity value.
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Figure 6 Proposed linear regression model.

where Ix,y is the brightness value of the current pixel, and
q is equal to:

q = αH(Imax + Imin) − 90° ∗ Imin
Imax − Imin

Afterwards, in order to extract the elevationmap of each
pixel, i.e.,�H in Figures 4 and 5, the tangent of each αP(x,y)
is computed. In this step, only the module of the resulting
tangent value is taken into account, since from the bright-
ness of a pixel it is not possible to define the sign of the
slope (as surfaces (2a) and (2b) in Figure 1).
Finally, the �H values are merged together to create the

complete elevation map (or the object profile) associated
with the horizontal component.
This is done by integrating pixel-by-pixel the �H val-

ues. Thus, the final elevation of each pixel is the sum of all
�H associated to the pixels that precede it in the current
image row. This operation is repeated for each row of the
cropped image.
To discriminate if the object profile decreases or

increases (i.e., if�H is positive or negative), the brightness
value of the currently considered pixel I(x, y) is compared
with the one of the previous in the row I(x − 1, y). If
I(x, y) ≥ I, the �H is considered positive (i.e., the profile
of the object increases); otherwise, it is negative.
As shown in the flow diagram of Figure 2, all the

aforementioned operations are repeated for the vertical
component.
Finally, the two elevation map components are merged

to obtain the computed shape results. The two compo-
nents are combined using the following equation:

H(i, j) =
√

�Hx(i, j)2 + �Hy(i, j)2

where H(i, j) represents the output elevation map matrix,
�Hx and �Hy are the two components of the elevation
map in the horizontal and vertical axis, respectively, while
(i, j) represents the pixel position in the image.

The most complex operation that the algorithm must
perform is represented by the tangent computation. How-
ever, to allow a fast execution, this function can be approx-
imated using a LUT approach. Moreover, compared to the
SfS algorithms introduced in the previous section, Fast-
SfS is not iterative, it does not present any minimization
function, and it can be parallelized.
Obviously, Fast-SfS presents the same problems, in

terms of output results, as all the other SfS algorithms that
rely on the Lambertian surface model. Nonetheless, these
problems can be overcome, resorting to stereo-vision
depth measures [15,16].

Proposed hardware architecture
The overall architecture of the proposed system is shown
in Figure 7. It is mainly composed of the FPGA subsystem
and the processor subsystem.
The stereo-vision camera provides in output two 1024×

1024 grayscale images, with 8 bit-per-pixel resolution. The
camera is directly connected to the FPGA subsystem (i.e.,
an FPGA device), that is in charge of acquiring the two
images at the same time, and pre-processing them in order
to enhance their quality. Moreover, the FPGA also imple-
ments a feature-based matching algorithm to provide a
‘sparse’ depth map of the observed object (i.e., it pro-
vides depth information of extracted features, only). In
parallel to the feature-based matching algorithm, the pro-
cessor subsystem performs the novel fast SfS algorithm,
presented in the previous section, and provides in out-
put the reconstructed shape of the actual observed object
portion. The FPGA and the processor subsystems share
an external memory, used to store results and temporary
data, and they communicate between each other in order
to avoid any collision during memory reads or writes. As
aforementioned, the results obtained by the stereo-vision
algorithm can be merged to the ones in output from the
Fast-SfS algorithm to correct them and to enhance their
accuracy [15,16].

Figure 7 Proposed architecture.
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The following subsections detail the functions and the
internal architecture of the two subsystems.

FPGA subsystem
As depicted in Figure 8, the FPGA subsystem is composed
of an FPGA device which includes several hardware-
implemented modules.
Its internal architecture can be split in two main stages.

The first, called image pre-processing stage, encloses the
input controller, the noise filters, the image enhancers,
and the rectifiers, while the second, called stereo-vision
processing stage, includes the feature extractors, the fea-
ture matcher, and the feature depth calculator. More-
over, a main control unit coordinates all the activities
of the different modules, providing also the interface
with the external bus to communicate with the shared
memory.
An FPGA-based hardware implementation of these

algorithms has been preferred with respect to a soft-
ware implementation running on an embedded proces-
sor since, when dealing with 1024 × 1024 pixels images,
the software alternative can lead to execution times in
the order of tens of seconds (see Section ‘Experimen-
tal results’ for further details). On the contrary, custom
FPGA-based hardware acceleration of these algorithms
can lead to very high performances.
The data stream from the stereo camera is managed

by the input controller (Figure 8). The input controller
manages the communication between the stereo cam-
era and the FPGA subsystem, depending on the pro-
tocol supported by the camera. Moreover, it provides
two output data streams, each one associated to one of
the two acquired images. Each pixel stream is organized
in 8-bit packets. Since the camera has a resolution of
8 bit-per-pixel (bpp), every output packet contains one
pixel. The output packets associated with the right and
left image are provided in input to the two noise filter
modules.

The two noise filter instances apply Gaussian noise
filtering [41] on the two received images. Image noise
filtering is essential to reduce the level of noise in the input
images, improving the accuracy of the subsequent feature
extraction and matching algorithms. In our architecture,
Gaussian filtering is performed via a two-dimensional
convolution of the input image with a 7×7 pixels Gaussian
kernel mask [41], implementing the following equation:

FI(x, y) =
N∑
i=0

N∑
j=0

I
(
δx + i, δy + j

) ∗ K(i, j)

where FI(x, y) is the filtered pixel in position (x, y),N is the
chosen Gaussian kernel size (i.e., 7), K(i, j) is the Gaussian
kernel factor in position (i, j), and δx and δy are equal to:

δx, δy = x, y −
(
N − 1

2

)

Since two-dimensional (2D) convolution is a very com-
putational intensive task, to allow very fast processing, an
optimized architecture has been designed. Figure 9 shows
the noise filter internal architecture.
An assumption is that the pixels are received in a raster

format, line-by-line from left to right and from top to
bottom. Pixels are sent to the image pixel organizer that
stores them inside the rows buffer (RB) before the actual
convolution computation. RB is composed of 7 FPGA
block-RAMs (BRAMs) hard macros [42], each one able
to store a full image row. The number of rows of the
buffer is dictated by the size of the used kernel matrix
(i.e., 7×7). Rows are buffered into RB using a circular pol-
icy, as reported in Figure 10. Pixels of a row are loaded
from right to left, and rows are loaded from top to bottom.
When the buffer is full, the following pixels are loaded,
starting from the first row again (Figure 10).
The image patch selector works in parallel with the

image pixel organizer, retrieving a set of consecutive
7 × 7 image blocks from RB, following a sliding window

Figure 8 FPGA subsystem internal architecture.
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Figure 9 Noise filter internal architecture.

approach on the image. The image patch selector activity
starts when the first seven rows of the image are loaded in
RB. At this stage, pixels of the central row (row number 4)
can be processed and filtered. It is worth to remember
here that, using a 7×7 kernel matrix, a 3-pixel wide border
of the image is not filtered, and related pixels are there-
fore discarded during filtering. At each clock cycle, a full
RB column is shifted into a 7 × 7 pixels register matrix
(Figure 11), composed of 49 8-bit registers. After the 7th
clock cycle, the first image block is ready for convolution.
The arithmetic stage convolves it by the kernel mask and
produces an output filtered pixel. At each following clock

cycle, a new RB column enters the register matrix and a
new filtered pixel of the row is produced.
While this process is carried out, new pixels continue

to feed RB through the image pixel organizer, thus imple-
menting a fully pipelined computation. When a full row
has been filtered, the next row can be therefore immedi-
ately analyzed. However, according to the circular buffer
procedure used to fill RB, the order in which rows are
stored changes. Let us consider Figure 12, in which rows
from 2 to 8 are stored in RB, with row 8 stored in the
first position. Row 8 has to feed the last line of the
register matrix. To overcome this problem, the image
patch selector includes a dynamic connection network
with the register matrix. This network guarantees that,
while rows are loaded in RB in different positions, the
register matrix is always fed with an ordered column
of pixels.
The arithmetic stage performs the 7 × 7 matrix convo-

lution using the MUL/ADD tree architecture, similar to
the one presented in [43]. The tree executes 49 multipli-
cations in parallel and then adds all 49 results. It contains
49 multipliers and 6 adder stages, for a total of 48 adders.

Figure 10 Image pixel organizer operations. N is equal to 1024, while (i,j) indicates pixel coordinates in the input image. (a) First image row
received. (b) Second image row received. (c) First to seventh image rows received. (d) Eighth image row received.
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Figure 11 Image patch selector behavior example. (a) First RB column enters in the register matrix. (b) Pixel (4,4) is elaborated and filtered.

Figure 12 Image patch selector behavior example. Pixel (5,4) is elaborated and filtered.
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Finally, all filtered pixels are sent both to the image
enhancer and to the external shared memory. Storing fil-
tered pixels in the external memory is mandatory since
this information is needed during the following features
matching phase.
Since the illumination conditions in the space environ-

ment cannot be predicted a priori and, at the same time,
the proposed architecture must always be able to properly
work, an image enhancement is required. The enhance-
ment process aims at increasing the quality of the input
images in terms of illumination and contrast. In [19], it has
been demonstrated that this operation allows to increase
the features extraction capability, also in bad illumination
conditions.
This task can be performed exploiting spatial-domain

image enhancement techniques. Among the available
spatial-domain techniques, the histogram equalization
[44] is the best one to obtain a high contrasted image
with an uniform tonal distribution. This technique mod-
ifies the intensity value of each pixel to produce a new
image containing equally distributed pixel intensity val-
ues. Thus, the output images have always similar tonal
distribution, reducing the effect of the illumination varia-
tions. However, this technique does not work well in every
condition. In fact, it works properly on images with back-
grounds and foregrounds that are both bright or both dark
(smoothed image histogram) but becomes ineffective in
the other cases.
If the image histogram is peaked and narrow, the his-

togram stretching [44] that allows to redistribute the pixel
intensities to cover the entire tonal spectrum, provides
better results. On the contrary, if the image histogram is
peaked and wide, it means that the input image already
has a good level of details and it contains an object on a
solid color background (i.e., the image can be provided in
output without modification).
Thus, in order to design a system able to work

autonomously, the image enhancer module must be
able to manage these three different cases and to pro-
vide in output the best enhanced image. This task can
be accomplished, exploiting the hardware module pro-
posed in [45], called self-adaptive frame enhancer (SAFE),
and used in [19]. SAFE is a high-performance FPGA-
based IP core that is able to enhance an input image
autonomously, selecting the best image enhancement
technique (i.e., histogram equalization, histogram stretch-
ing, or no enhancement) to be applied.
This IP core receives the input pixels from the noise

filter (see Figure 8) through an 8-bit input interface (i.e.,
one pixel can be received each clock cycle). In addition,
SAFE receives in input two parameters: HW and BW.
HW defines the threshold associated with the image his-
togram width (i.e., the distance between the minimum
and maximum intensity inside the image histogram). BW

defines the threshold referred to the difference between
two consecutive image histogram bar (HB) values. These
two parameters are required to automatically select the
best image to provide in output (i.e., equalized image,
stretched image, or input image without modifications),
depending on the input image statistics. Figure 13 shows
the block diagram of SAFE.
The histogram calculator counts the occurrences of

each pixel intensity, in order to compute the histogram
bar values. In this way, when a complete image has been
received, it is able to provide in output the histogram
associated with the received image.
The histogram analyzer scans the image histogram in

order to extract the maximum difference between two
consecutive histogram bars and the histogram width.
These two values are compared with the input thresholds
(i.e., HW and BW ), in order to select the best image to be
provided in output.
The equalizer/stretcher module performs both his-

togram equalization and histogram stretching on the
input image, but it provides in output only the best image
(i.e., equalized image, stretched image, or input image
without modifications) depending on the information
provided by the histogram analyzer.
After image enhancement, the rectifier modules per-

form the rectification of the left and right image, respec-
tively. Image rectification is essential (i) to remove the
image distortion induced by the camera lens (especially
in the borders of the image) and (ii) to align the images
acquired by two different points of view in order to sub-
sequently apply the epipolar geometry during the feature-
matching task [21]. Since the rectification parameters are
fixed by the camera type and by the relative orientation
between the two cameras, the rectification process can be
performed using a simple LUT plus a bilinear interpola-
tion approach, as done in [21,22], where the two LUTs
(one for each image) are stored in the external shared
memory. Basically, each input pixel in position (x, y) in
the original image is moved to a new position (x1, y1) in
the new rectified image. The value of the rectified pixel
is computed, interpolating the four adjacent pixels in the

Figure 13 SAFE block diagram.
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original image. Since for resources efficiency reasons, the
LUT is stored in the external memory, and the coordinates
must be translated in an absolute address value. This task
is accomplished by simply adding a constant offset that is
equal to the memory base address at which the LUTs are
stored.
After image pre-processing, the feature-based stereo-

vision algorithm can be applied in order to obtain
the features depth map. The algorithm performs fea-
ture extraction, feature matching, and finally, feature
depth computation. Among these three activities, fea-
ture extraction is the most complex one. Several feature
extraction algorithms have been proposed in the litera-
ture. Beaudet [46], smallest univalue segment assimilating
nucleus (SUSAN) [47], Harris [48], speeded up robust
features (SURF) [49], and scale-invariant feature trans-
form (SIFT) [50] are just some examples. In [19], we
used a software implementation of SIFT as feature extrac-
tor since, from the algorithmic point of view, along with
SURF, it is probably the most robust solution due to
its scale and rotation invariance. This means that fea-
tures can be matched between two consecutive frames
even if they have differences in terms of scale and rota-
tion. However, due to their complexity, their hardware
implementations are very resource hungry, as reported
in [51-53]. Among the available feature extraction algo-
rithms, Harris is probably the best trade-off between
precision and complexity [54]. In this specific case, since
the two images acquired by the two cameras can present
only very small differences in terms of rotations and
almost no differences in terms of scale, its accuracy is
comparable to the one provided by SURF and SIFT. Its
complexity makes it affordable for a fast FPGA-based
hardware implementation requiring limited hardware
resources.
For each pixel (x, y) of a frame, the Harris algorithm

computes the so-called corner response R(x, y) according
to the following equationa:

R(x, y) = Det(N(x, y)) − k · Tr2(N(x, y))

where k is an empirical correction factor equal to 0.04,
and N(x, y) is the second-moment matrix, which depends
on the spatial image derivatives Lx and Ly, in the respec-
tive directions (i.e., x and y) [48]. Pixels with high
corner response have high probability to represent a cor-
ner (i.e., an image feature) of the selected frame and
can be selected to search for matching points between
consecutive frames.
The features extractors in Figure 8 implement the Harris

corner detection algorithm [48]. It is worth noting that
the spatial image derivatives of the filtered image in
the horizontal (Lx) and vertical (Ly) direction are per-
formed by convolving the pre-processed image, read-out

from the shared memory, with the 3 × 3 Prewitt kernels
[41], using an architecture similar to the one proposed
for the noise filters, guaranteeing high throughput. The
extracted features are stored inside an internal buffer,
implemented resorting to the FPGA internal memory
resources.
The features matcher reads from the internal buffer the

features extracted by the features extractors and finds the
set of features that match in the two input images, using
a cross-correlation approach. Thanks to the rectification
process, the features matcher must compute the cross-
correlation between features belonging to the same row
in the two images (1-dimensional problem), only. The
formula to compute the cross-correlation between two
features is:

C =
∑

i,j∈patch
| I2(i, j) − I1(i, j) |

where patch identifies the pixels window on which the
correlation must be calculated (i.e., correlation window)
and I1 and I2 identify the pixel intensity associated with
the two input images. The less is the value of C, the more
correlated will be the two points.
The computed cross-correlation results are thresholded,

in order to eliminate uncorrelated features couples. If
the calculated cross-correlation value is less than a given
threshold, the coordinates of the correlated features are
stored inside an internal buffer.
Finally, the feature depth calculator reads the coordi-

nates of the matched features and computes their depth
exploiting triangulation [27]. Since matched features are
aligned in the two images, the triangulation becomes a 2D
problem. Looking at Figure 14, knowing the focal length
of the two cameras, the depth Di of a feature point Pi, i.e.,
the distance between the point and the baseline b of the
stereo camera, can be computed as:

Di = f · b
x1,i − x2,i

where x1,i and x2,i represent the x-coordinate of the con-
sidered matched feature Pi in the two acquired images.
Finally, the depth results are stored in the external

shared memory in order to be accessible by the processor
subsystem for following computations.

Processor subsystem
The processor subsystem includes a processor that exe-
cutes the novel fast SfS algorithm presented in the previ-
ous section. Even if implementing the proposed algorithm
directly in hardware, as the modules described in the
previous subsection, could lead to a boost of the per-
formances, in this paper a software implementation has
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Figure 14 Triangulation for depth estimation.

been preferred to highlight the differences, in terms of
execution time, with respect to other state-of-the-art SfS
algorithms.
To perform the proposed approach, the processor reads

from the shared memory one of the two rectified images.
The results of the algorithm represent the shape of the
observed object, with respect to a reference plane.
Eventually, the same processor subsystem can be

exploited to execute the algorithm that aims at merg-
ing the depth information gathered from the FPGA
subsystem, with the results obtained by the fast SfS
approach. This can allow (i) to correct the reconstructed
shape in the features points neighbourhoods and (ii) to
extract the absolute size and distance of the object under
evaluation.

Experimental results
To prove the feasibility of the proposed architecture, we
implemented both the FPGA subsystem and the proces-
sor subsystem on a single FPGA device exploring the
Aeroflex Gaisler GR-CPCI-XC4V development board,
which is equipped with a Xilinx Virtex-4 VLX100 FPGA
device and a 256 MB SDRAM memory [55]. The choice
of using a Virtex-4 FPGA, instead of a more advanced
device, fits the considered space debris removal applica-
tions. In fact, modern radiation-hardened space-qualified
FPGAs exploit the same device architecture [56]. More-
over, the processor subsystem has been implemented using
the Aeroflex Gaisler LEON3 soft-core processor that rep-
resents the standard processor architecture used in space
applications [17].
In the following, experimental results are separately

reported for the FPGA subsystem and the processor
subsystem.

FPGA subsystem results
All modules described in the previous sections have
been synthesized and implemented on the chosen FPGA
device, resorting to Xilinx ISE Design Suite 14.6. Table 1
reports the resources consumption of each module com-
posing the FPGA subsystem, in terms of LUTs, registers
(FFs), and internal BRAMs [42].
The numbers in brackets represent the percentages of

resources used with respect to the total available in the
FPGA device. It is worth noting that noise filters, image
enhancers, rectifiers, and features extractors are instanti-
ated twice in the design.
To emulate the camera, the images are supposed to be

pre-loaded in an external memory. Thus, the input con-
troller consists of a direct memory access interface that
autonomously reads the images pre-loaded into the shared
memory.

Table 1 FPGA subsystemmodules logic andmemory
hardware resources consumption for a Xilinx Virtex-4
VLX100 FPGA device

LUTs FFs BRAM

Input controller 352 96 -

Noise filter (× 2) 11,792 1,392 14

Image enhancer (× 2) 2,635 317 16

Rectifier (× 2) 1,216 712 8

Features extractor (× 2) 19,162 2,212 12

Features matcher 2,432 656 19

Features depth calculator 615 64 -

Overall 38,204 5,449 69

(38.9%) (5.54%) (28.8%)
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The entire processing chain is able to process a couple of
images and to provide the associated depth map in about
32 ms, leading to a throughput of 31 image couples per
second.
The bottleneck of the system is represented by the

external shared memory that in some time slots is simulta-
neously requested by different modules. Using a dual-port
memory can help to avoid the stall of the processing chain,
leading to a greater throughput.
To highlight the speed-up obtained by resorting to hard-

ware acceleration, the algorithm implemented by the pro-
posed hardware modules has also been described in C
and compiled (using the maximum possible optimization
level) for the LEON3 processor. The processor has been
implemented, enabling the floating-point unit and the
internal data/instruction cache memories of 4 and 16 KB,
respectively. The overall software execution time attests
around 42 s, when the processor runs at 60 MHz (i.e.,
the maximum operating frequency of the LEON3 pro-
cessor implemented on the selected FPGA device). The
major contribution in the execution time is given by the
Gaussian filtering and feature extraction functions that
perform 2D convolution.
Comparing the overall software and hardware execu-

tion times, hardware acceleration provides a speed-up of
1,300×.
Finally, focusing on the features extractor and fea-

tures matcher modules, we can highlight the gain, in
terms of hardware resources consumption, of using the
Harris algorithm, with respect to more complex SIFT
or SURF extractors. As an example, [51] and [52] pro-
pose two FPGA-based implementations of the SURF
algorithm. The architecture proposed in [51] consumes
almost 100% of the LUTs available on a medium-sized
Xilinx Virtex 6 FPGA, without guaranteeing real-time
performances. Similarly, the architecture proposed in
[52] consumes about 90% of the internal memory of
a Xilinx Virtex 5 FPGA. It saves logic resources, but
it is able to process in real-time only images with
a limited resolution of 640 × 480 pixels. Another exam-
ple is presented in [53] where an FPGA-based imple-
mentation of the SIFT algorithm is presented. It is
able to process in real-time 640 × 480 pixel images,
consuming about 30,000 LUTs and 97 internal digi-
tal signal processor hard macros in a Xilinx Virtex 5
FPGA. Instead, taking into account the reduced com-
plexity of the Harris algorithm, the feature extraction
for the two 1024 × 1024 input images, and the match-
ing task can be performed in real-time using only 21,594
LUTs and 31 BRAMs resources, representing the 22%
and the 12.9% of the considered Virtex-4 FPGA device,
respectively.
An explicit comparison with other state-of-the-

art FPGA-based stereo-vision architecture has not

been made since they focus on block-based methods
[28-31]. Even if they provide more dense results,
due to their increased complexity, they incur in a
greater hardware resources consumption (not includ-
ing the resources needed for the image pre-processing)
[28,52,53].

Processor subsystem results
The processor subsystem has been implemented resorting
to the LEON3 soft-core processor architecture [17] and
integrated in the same FPGA device as the FPGA subsys-
tem. The processor has been implemented, enabling the
floating-point unit and the internal data and instruction
cache memories of 4 and 16 KB, respectively. The max-
imum operating frequency of the processor, synthesized
on a Xilinx Virtex-4 VLX 100 FPGA device, is equal to
60 MHz.
The chosen processor configuration leads to an hard-

ware resources usage of 21,395 LUTs, 8,750 FFs, and 32
BRAMs. Thus, the overall resources consumption of the
proposed system (FPGA and processor subsystems) is
around 60% of the overall logic resources available in the
FPGA device.
In order to evaluate the execution time of the pro-

posed Fast-SfS algorithm, different executions have been
performed on the LEON3 processor, providing in input
images with different size. The graph in Figure 15 shows
the execution time trend with respect to the input image
size.
The proposed algorithm has been compared, in terms

of execution time, to other SfS approaches proposed in
the literature. Durou et al. [33] reports execution times
of the fastest SfS algorithms presented in the literature.
The algorithms are executed on a Sun Enterprise E420

Figure 15 Proposed algorithm execution time trend with
respect to the input image size.
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machine [57], equipped with four UltraSparc II processors
running at 450 MHz, each one with 4 MB of dedicated
cache. From [33], the fastest SfS algorithm is the one pre-
sented in [58], that is an iterative algorithm, requiring
0.29 s for 5 iterations and 1.17 for 20 iterations (to ensure
better results), to process a 256 × 256 images. Even if
running on a processor running at 1/6 of the operat-
ing frequency and equipped with a cache of 3 orders of
magnitude smaller, the algorithm proposed in this paper
requires almost the same time of [58].
In [34], authors state that the proposed non-iterative

SfS algorithm is faster than the iterative ones. By compar-
ing their approach with Fast-SfS, from Figure 16, it can
be seen that the speed-up is always greater than 3×. It
is worth noting that in [34], the testbed used to run the
proposed algorithm is not defined.
Finally, Figures 17, 18 and 19 depict the results obtained

by running the proposed Fast-SfS algorithm on a 200×200
synthetic image representing a semi-sphere, on a 400 ×
600 synthetic image representing a vase, and on a 459 ×
306 real image representing a drinking bottle. This last test
image has been chosen since its shape is more similar to a
space debris.
The algorithm applied on the two synthetic images

provides good results since they are characterized by a
diffused light and a monochromatic surface. This char-
acteristics completely match the assumptions on which
the proposed algorithm is based (see Section ‘Novel fast
shape-from-shading algorithm’).
On the other hand, in the real image the target object

is illuminated by direct light, since diffused light can-
not be easily reproduced in laboratory. Moreover, due to
the reflective material composing the object, the image
presents some light spots (see the upper central part of
the drinking bottle in Figure 19a). As can be noted in
Figure 19b,c, these light spots lead to some peaks in the

Figure 16 Comparison of the execution times of Fast-SfS and the
algorithm reported in [34].

Figure 17 Example Fast-SfS output result on the semi-sphere
image. (a) Input image. (b) Fast-SfS results (side view). (c) Fast-SfS
results (dimetric view).

reconstructed shape. Nevertheless, the resulting shape
provided by the Fast-SfS algorithm follows the profile of
the real object and the peaks can be efficiently corrected
by merging the reconstructed shape with the information
gathered from the stereo-vision algorithm (as discussed in
Section ‘Related works’).
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Figure 18 Example Fast-SfS output result on the vase image. (a) Input image. (b) Fast-SfS results (dimetric view). (c) Fast-SfS results (opposite
dimetric view).

Conclusions
This paper presented a novel fast SfS algorithm and
an FPGA-based system architecture for video-based
shape reconstruction to be employed during space debris
removal missions. The FPGA-based architecture provides
fast image pre-processing, depth information exploiting

a feature-based stereo-vision approach, and SfS results
employing a processor that executes the proposed novel
SfS algorithm.
Experimental results highlight the achieved timing and

resources consumption improvements with respect to
other state-of-the-art solutions. Moreover, the limited
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Figure 19 Example Fast-SfS output result on the drinking bottle image. (a) Input image. (b) Fast-SfS results (front view, highlighting the light
spots). (c) Fast-SfS results (oblique view).

hardware resources consumption of the entire system
allows to implement it in a single FPGA device, leaving
free more than the 40% of overall hardware resources in
the selected device.
The remaining part of the FPGA device can be exploited

(i) to improve the reliability of the design, employed in
space applications, e.g., applying some fault tolerance
techniques; (ii) to hardware accelerate the proposed SfS
algorithm, avoiding the usage of a processor; and (ii) to
include the following vision-based algorithms that aim at
merging the results obtained by the stereo-vision and the
novel fast SfS approach.

When more detailed requirements of the space debris
removal missions will be available, future work will focus
on the improvement of the proposed algorithm, taking
also into account the earth albedo effect during the shape
model computation.

Endnote
aDet(X) denotes the determinant of matrix X, and

Tr(X) denotes the trace of matrix X

Competing interests
The authors declare that they have no competing interests.



Di Carlo et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:147 Page 18 of 19
http://asp.eurasipjournals.com/content/2014/1/147

Acknowledgements
The authors would like to express their sincere thanks to Dr. Walter Allasia and
Dr. Francesco Rosso of Eurix company for their helpful hints and fruitful
brainstorming meetings.

Received: 28 February 2014 Accepted: 12 September 2014
Published: 25 September 2014

References
1. European Space Agency (ESA): Requirements on Space Debris Mitigation

for ESA Projects (2009). http://iadc-online.org/References/Docu/ESA
%20Requirements%20for%20Space%20Debris%20Mitigation.pdf

2. NASA Headquarters Office of Safety and Mission Assurance, NASA
Technical Standard: Process for Limiting Orbital Debris. National
Aeronautics and Space AdministrationNASA-STD 8719.14, Washington DC
(USA), (2011) http://www.hq.nasa.gov/office/codeq/doctree/871914.pdf

3. Steering Group, Key Definitions of the Inter-Agency Space Debris
Coordination Committee (IADC). Inter-Agency Space Debris Coordination
Committee (IADC) IADC-13-02 (2013) http://www.iadc-online.org/
Documents/IADC-2013-02,%20IADC%20Key%20Definitions.pdf

4. R Piemonte, CApture and DE-orbiting Technologies (CADET) project.
http://web.aviospace.com/cadet/index.php/obj

5. D Kessler, Collisional cascading: The limits of population growth in low
earth orbit. Adv. Space Res. 11(12), 63–66 (1991)

6. C Bonnal, W Naumann, Ariane debris mitigation measures: Past and
future. Acta Astronautica 40(2–8), 275–282 (1997)

7. European Space Agency (ESA): Launchers. http://www.esa.int/
Our_Activities/Launchers/Ariane_42

8. MH Kaplan, Space debris realities and removal, in Proceedings of Improving
Space OperationsWorkshop (SOSTC) 2010 (Greenbelt (MD, USA), 2010)

9. N Zinner, A Williamson, K Brenner, JB Curran, A Isaak, M Knoch, A Leppek,
J Lestishen, Junk hunter: Autonomous rendezvous, capture, and de-orbit
of orbital debris, in Proceedings of AIAA SPACE 2011 Conference & Exposition
(Pasadena (CA, USA), 2011)

10. F ter Haar, Reconstruction and analysis of shapes from 3d scans, PhD thesis.
(Utrecht University, 2009)

11. A Kato, LM Moskal, P Schiess, ME Swanson, D Calhoun, W Stuetzle,
Capturing tree crown formation through implicit surface reconstruction
using airborne lidar data. Remote Sensing Environ. 113(6), 1148–1162
(2009)

12. Y Tang, X Hua, M Yokomichi, T Kitazoe, M Kono, Stereo disparity
perception for monochromatic surface by self-organization neural
network, in Neural Information Processing, 2002. ICONIP ’02. Proceedings of
the 9th International Conference On, vol. 4 (Singapore (Malaysia), 2002),
pp. 1623–16284

13. R Zhang, P-S Tsai, JE Cryer, M Shah, Shape-from-shading: a survey. Pattern
Anal. Mach. Intell. IEEE Trans. 21(8), 690–706 (1999)

14. S Kumar, M Kumar, B Raman, N Sukavanam, R Bhargava, Depth recovery
of complex surfaces from texture-less pair of stereo images. Electron. Lett.
Comput. Vis. Image Anal. 8(1), 44–56 (2009)

15. MV Rohith, S Sorensen, S Rhein, C Kambhamettu, Shape from stereo and
shading by gradient constrained interpolation, in Image Processing (ICIP),
2013 20th IEEE International Conference On (Melbourne, 2013),
pp. 2232–2236

16. CK Chow, SY Yuen, Recovering shape by shading and stereo under
lambertian shading model. Int. J. Comput. Vis. 85(1), 58–100 (2009)

17. J Gaisler, A portable and fault-tolerant microprocessor based on the sparc
v8 architecture, in Dependable Systems and Networks, 2002. DSN 2002.
Proceedings. International Conference On (IEEE Bethesda (MD, USA), 2002),
pp. 409–415

18. S Habinc, Suitability of reprogrammable FPGAs in space applications -
feasibility report, Technical report. (Gaisler Research, Gothenburg
(Sweden), 2002)

19. F Rosso, F Gallo, W Allasia, E Licata, P Prinetto, D Rolfo, P Trotta, A Favetto,
M Paleari, P Ariano, Stereo vision system for capture and removal of space
debris, in Design and Architectures for Signal and Image Processing (DASIP),
2013 Conference On (IEEE, Cagliari (Italy), 2013), pp. 201–207

20. R Hartley, A Zisserman,Multiple View Geometry in Computer Vision.
(Cambridge university press, Cambridge, 2003)

21. C Vancea, S Nedevschi, Lut-based image rectification module
implemented in fpga, in Intelligent Computer Communication and

Processing, 2007 IEEE International Conference On (IEEE, Cluj-Napoca
(Romania), 2007), pp. 147–154

22. DH Park, HS Ko, JG Kim, JD Cho, Real time rectification using differentially
encoded lookup table, in Proceedings of the 5th International Conference
on Ubiquitous InformationManagement and Communication (ACM, Seoul
(Republic of Korea), 2011), p. 47

23. H Sadeghi, P Moallem, SA Monadjemi, Feature based color stereo
matching algorithm using restricted search, in Proceedings of the European
Computing Conference (Springer, Netherland, 2009), pp. 105–111

24. CJ Taylor, Surface reconstruction from feature based stereo, in Computer
Vision, 2003. Proceedings. Ninth IEEE International Conference On (IEEE Kyoto
(Japan), 2003), pp. 184–190

25. Y-S Chen, Y-P Hung, C-S Fuh, Fast block matching algorithm based on the
winner-update strategy. Image Process. IEEE Trans. 10(8), 1212–1222
(2001)

26. I Nahhas, M Drahansky, Analysis of block matching algorithms with fast
computational and winner-update strategies. Int. J. Signal Process. Image
Process. Pattern Recognit. 6(3), 129 (2013)

27. N Ayache, Artificial Vision for Mobile Robots: Stereo Vision andMultisensory
Perception. (MIT Press, Cambridge, 1991)

28. C Colodro-Conde, FJ Toledo-Moreo, R Toledo-Moreo, JJ Martínez-Álvarez,
J Garrigós Guerrero, JM Ferrández-Vicente, Evaluation of stereo
correspondence algorithms and their implementation on fpga. J. Syst.
Arch. 60(1), 22–31 (2014)

29. S Thomas, K Papadimitriou, A Dollas, Architecture and implementation of
real-time 3d stereo vision on a xilinx fpga, in Very Large Scale Integration
(VLSI-SoC), 2013 IFIP/IEEE 21st International Conference On (IEEE, Istanbul
(Turkey), 2013), pp. 186–191

30. W Wang, J Yan, N Xu, Y Wang, F-H Hsu, Real-time high-quality stereo
vision system in fpga, in Field-Programmable Technology (FPT), 2013
International Conference On (IEEE, Kyoto (Japan), 2013), pp. 358–361

31. P Zicari, H Lam, A George, Reconfigurable computing architecture for
accurate disparity map calculation in real-time stereo vision, in In Proc.
International Conference on Image Processing, Computer Vision, and Pattern
Recognition (IPCV’13), vol. 1, (2013), pp. 3–10

32. BKP Horn, MJ Brooks (eds.), Shape from Shading. (MIT Press, Cambridge,
1989)

33. J-D Durou, M Falcone, M Sagona, A survey of numerical methods for
shape from shading. Institut de Recherche en Informatique (IRIT)
Université Paul Sabatier, Rapport de recherche IRIT N2004-2-R (2004)

34. R Szeliski, ed. by OD Faugeras, Fast shape from shading, in ECCV. Lecture
Notes in Computer Science, vol. 427 (Springer US, 1990), pp. 359–368

35. P Daniel, J-D Durou, From deterministic to stochastic methods for shape
from shading, in In Proc. 4th Asian Conf. on Comp. Vis (Taipei (China), 2000),
pp. 187–192

36. L Abada, S Aouat, Solving the perspective shape from shading problem
using a new integration method, in Science and Information Conference
(SAI), 2013 (London (UK), 2013), pp. 416–422

37. NASA Earth Observatory: Global Albedo. http://visibleearth.nasa.gov/
view.php?id=60636

38. The U.S. Geological Survey USGS Water Science School: How much water
is there on, in, and above the Earth? http://water.usgs.gov/edu/
earthhowmuch.html

39. N Xie, AJP Theuwissen, An autonomous microdigital sun sensor by a
cmos imager in space application. Electron Devices IEEE Trans. 59(12),
3405–3410 (2012)

40. CR McBryde, EG Lightsey, A star tracker design for cubesats, in Aerospace
Conference, 2012 IEEE (Big Sky (MT - USA), 2012), pp. 1–14

41. RC González, RE Woods, Digital Image Processing. (Pearson/Prentice Hall,
US, 2008)

42. Xilinx Corporation: Virtex-4 FPGA User Guide - UCG070. (2008).
http://www.xilinx.com/support/documentation/user_guides/ug070.pdf

43. S Di Carlo, G Gambardella, M Indaco, D Rolfo, G Tiotto, P Prinetto, An
area-efficient 2-D convolution implementation on FPGA for space
applications, in Proc. of 6th International Design and Test Workshop (IDT)
(Beirut (Lebanon), 2011), pp. 88–92

44. R Lakshmanan, MS Nair, M Wilscy, R Tatavarti, Automatic contrast
enhancement for low contrast images: A comparison of recent histogram
based techniques, in Proc. of 1st International Conference on Computer
Science and Information Technology (ICCSIT) (Barcelona (Spain), 2008),
pp. 269–276

http://iadc-online.org/References/Docu/ESA%20Requirements%20for%20Space%20Debris%20Mitigation.pdf
http://iadc-online.org/References/Docu/ESA%20Requirements%20for%20Space%20Debris%20Mitigation.pdf
http://www.hq.nasa.gov/office/codeq/doctree/871914.pdf
http://www.iadc-online.org/Documents/IADC-2013-02,%20IADC%20Key%20Definitions.pdf
http://www.iadc-online.org/Documents/IADC-2013-02,%20IADC%20Key%20Definitions.pdf
http://web.aviospace.com/cadet/index.php/obj
http://www.esa.int/Our_Activities/Launchers/Ariane_42
http://www.esa.int/Our_Activities/Launchers/Ariane_42
http://visibleearth.nasa.gov/view.php?id=60636
http://visibleearth.nasa.gov/view.php?id=60636
http://water.usgs.gov/edu/earthhowmuch.html
http://water.usgs.gov/edu/earthhowmuch.html
http://www.xilinx.com/support/documentation/user_guides/ug070.pdf


Di Carlo et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:147 Page 19 of 19
http://asp.eurasipjournals.com/content/2014/1/147

45. S Di Carlo, G Gambardella, P Lanza, P Prinetto, D Rolfo, P Trotta, Safe: a self
adaptive frame enhancer fpga-based ip-core for real-time space
applications, in Proc. of 7th International Design and Test Workshop (IDT)
(Doha (Qatar), 2012)

46. P Beaudet, Rotationally invariant image operators, in Proc. of 4th
International Joint Conference on Pattern Recognition (Kyoto (Japan), 1978),
pp. 579–583

47. SM Smith, JM Brady, SUSAN - a new approach to low level image
processing. Int. J. Comput. Vis. (IJCV) 23, 45–78 (1995)

48. C Harris, M Stephens, A combined corner and edge detector, in Proc. of
the 4th Alvey Vision Conference (Manchester (United Kingdom), 1988),
pp. 147–151

49. H Bay, A Ess, T Tuytelaars, LV Gool, SURF: Speeded up robust features.
Comput. Vis. Image Underst. (CVIU) 110, 346–359 (2008)

50. DG Lowe, Object recognition from local scale-invariant features, in
Proceedings of the International Conference on Computer Vision-Volume 2 -
Volume 2. ICCV ’99 (IEEE Computer Society, Washington, 1999)

51. N Battezzati, S Colazzo, M Maffione, L Senepa, SURF algorithm in FPGA: a
novel architecture for high demanding industrial applications, in Proc. of
2012 Design, Automation Test in Europe Conference Exhibition (DATE)
(Dresden (Germany), 2012), pp. 161–162

52. D Bouris, A Nikitakis, I Papaefstathiou, Fast and efficient fpga-based
feature detection employing the surf algorithm, in Field-Programmable
Custom ComputingMachines (FCCM) 2010 18th IEEE Annual International
SymposiumOn (Toronto (Canada), 2010), pp. 3–10

53. L Yao, H Feng, Y Zhu, Z Jiang, D Zhao, W Feng, An architecture of
optimised SIFT feature detection for an fpga implementation of an image
matcher, in Field-Programmable Technology, 2009. FPT 2009. International
Conference On (Sydney (Australia), 2009), pp. 30–37

54. T Tuytelaars, K Mikolajczyk, Local invariant feature detectors: a survey.
Foundations Trends Comput. Graph. Vis. 3(3), 177–280 (2008)

55. Gaisler Research AB: GR-CPCI-XC4V LEON PCI Virtex 4 Development Board
- Product sheet. (2007). http://www.pender.ch/docs/GR-CPCI-
XC4V_product_sheet.pdf

56. Xilinx Corporation: Space-Grade Virtex-4QV Family Overview - DS653.
(2010). http://www.xilinx.com/support/documentation/data_sheets/
ds653.pdf

57. Inc SM, Sun Enterprise 420R Server Owner’s Guide. (1999). http://docs.
oracle.com/cd/E19088-01/420r.srvr/806-1078-10/806-1078-10.pdf

58. Ping-T Sing, M Shah, Shape from shading using linear approximation.
Image Vis. Comput. 12(8), 487–498 (1994)

doi:10.1186/1687-6180-2014-147
Cite this article as: Di Carlo et al.: A novel algorithm and hardware
architecture for fast video-based shape reconstruction of space debris.
EURASIP Journal on Advances in Signal Processing 2014 2014:147.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

http://www.pender.ch/docs/GR-CPCI-XC4V_product_sheet.pdf
http://www.pender.ch/docs/GR-CPCI-XC4V_product_sheet.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds653.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds653.pdf
http://docs.oracle.com/cd/E19088-01/420r.srvr/806-1078-10/806-1078-10.pdf
http://docs.oracle.com/cd/E19088-01/420r.srvr/806-1078-10/806-1078-10.pdf

