12,538 research outputs found

    First Double-Chooz Results and the Reactor Antineutrino Anomaly

    Full text link
    We investigate the possible effects of short-baseline antinu_e disappearance implied by the reactor antineutrino anomaly on the Double-Chooz determination of theta_{13} through the normalization of the initial antineutrino flux with the Bugey-4 measurement. We show that the effects are negligible and the value of theta_{13} obtained by the Double-Chooz collaboration is accurate only if Delta m^2_{41} is larger than about 3 eV^2. For smaller values of Delta m^2_{41} the short-baseline oscillations are not fully averaged at Bugey-4 and the uncertainties due to the reactor antineutrino anomaly can be of the same order of magnitude of the intrinsic Double-Chooz uncertainties.Comment: 4 page

    Single chain elasticity and thermoelasticity of polyethylene

    Full text link
    Single-chain elasticity of polyethylene at θ\theta point up to 90% of stretching with respect to its contour length is computed by Monte-Carlo simulation of an atomistic model in continuous space. The elasticity law together with the free-energy and the internal energy variations with stretching are found to be very well represented by the wormlike chain model up to 65% of the chain elongation, provided the persistence length is treated as a temperature dependent parameter. Beyond this value of elongation simple ideal chain models are not able to describe the Monte Carlo data in a thermodynamic consistent way. This study reinforces the use of the wormlike chain model to interpret experimental data on the elasticity of synthetic polymers in the finite extensibility regime, provided the chain is not yet in its fully stretched regime. Specific solvent effects on the elasticity law and the partition between energetic and entropic contributions to single chain elasticity are investigated.Comment: 32 pages with 5 figures included. Accepted as a regular paper on The Journal of Chemical Physics, August 2002. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physic

    Physical effects of the Immirzi parameter

    Full text link
    The Immirzi parameter is a constant appearing in the general relativity action used as a starting point for the loop quantization of gravity. The parameter is commonly believed not to show up in the equations of motion, because it appears in front of a term in the action that vanishes on shell. We show that in the presence of fermions, instead, the Immirzi term in the action does not vanish on shell, and the Immirzi parameter does appear in the equations of motion. It determines the coupling constant of a four-fermion interaction. Therefore the Immirzi parameter leads to effects that are observable in principle, even independently from nonperturbative quantum gravity.Comment: 3 pages. Substantial revision from the first versio

    Emergent Quantum Mechanics and Emergent Symmetries

    Full text link
    Quantum mechanics is 'emergent' if a statistical treatment of large scale phenomena in a locally deterministic theory requires the use of quantum operators. These quantum operators may allow for symmetry transformations that are not present in the underlying deterministic system. Such theories allow for a natural explanation of the existence of gauge equivalence classes (gauge orbits), including the equivalence classes generated by general coordinate transformations. Thus, local gauge symmetries and general coordinate invariance could be emergent symmetries, and this might lead to new alleys towards understanding the flatness problem of the Universe.Comment: 10 pages, 1 figure. Presented at PASCOS 13, Imperial College, London, July 6, 200

    Public Libraries and the Internet 2006

    Get PDF
    Examines the capability of public libraries to provide and sustain public access Internet services and resources that meet community needs, including serving as the first choice for content, resources, services, and technology infrastructure

    On approximate solutions of semilinear evolution equations II. Generalizations, and applications to Navier-Stokes equations

    Full text link
    In our previous paper [12] (Rev. Math. Phys. 16, 383-420 (2004)), a general framework was outlined to treat the approximate solutions of semilinear evolution equations; more precisely, a scheme was presented to infer from an approximate solution the existence (local or global in time) of an exact solution, and to estimate their distance. In the first half of the present work the abstract framework of \cite{uno} is extended, so as to be applicable to evolutionary PDEs whose nonlinearities contain derivatives in the space variables. In the second half of the paper this extended framework is applied to theincompressible Navier-Stokes equations, on a torus T^d of any dimension. In this way a number of results are obtained in the setting of the Sobolev spaces H^n(T^d), choosing the approximate solutions in a number of different ways. With the simplest choices we recover local existence of the exact solution for arbitrary data and external forces, as well as global existence for small data and forces. With the supplementary assumption of exponential decay in time for the forces, the same decay law is derived for the exact solution with small (zero mean) data and forces. The interval of existence for arbitrary data, the upper bounds on data and forces for global existence, and all estimates on the exponential decay of the exact solution are derived in a fully quantitative way (i.e., giving the values of all the necessary constants; this makes a difference with most of the previous literature). Nextly, the Galerkin approximate solutions are considered and precise, still quantitative estimates are derived for their H^n distance from the exact solution; these are global in time for small data and forces (with exponential time decay of the above distance, if the forces decay similarly).Comment: LaTeX, 84 pages. The final version published in Reviews in Mathematical Physic

    Monolithic zirconia and digital impression: case report

    Get PDF
    The aim of this study is to present a clinical case of a full arch prosthetic rehabilitation on natural teeth, combining both digital work-flow and monolithic zirconi

    Quantum Monte Carlo Simulation of the High-Pressure Molecular-Atomic Crossover in Fluid Hydrogen

    Full text link
    A first-order liquid-liquid phase transition in high-pressure hydrogen between molecular and atomic fluid phases has been predicted in computer simulations using ab initio molecular dynamics approaches. However, experiments indicate that molecular dissociation may occur through a continuous crossover rather than a first-order transition. Here we study the nature of molecular dissociation in fluid hydrogen using an alternative simulation technique in which electronic correlation is computed within quantum Monte Carlo, the so-called Coupled Electron Ion Monte Carlo (CEIMC) method. We find no evidence for a first-order liquid-liquid phase transition.Comment: 4 pages, 5 figures; content changed; accepted for publication in Phys. Rev. Let
    • …
    corecore