2 research outputs found

    Unravelling Resistive Switching Mechanism in ZnO NW Arrays: The Role of the Polycrystalline Base Layer

    No full text
    The physical mechanism involved in resistive switching phenomena occurring in devices based on ZnO nanowire (NW) arrays may vary considerably, also depending on the structure of the switching layer. In particular, it is shown here that the formation of a ZnO base layer between the metallic catalyst substrate and the NW, which is typical of CVD-grown ZnO NW arrays, should not be neglected when explaining the switching physical mechanism. The structural and electrical properties of this layer are investigated after the mechanical removal of NWs. Electrical measurements were performed in the presence of NWs and, after their removal, showed that the base alone exhibits resistive switching properties. The proposed switching mechanism is based on the creation/rupture of an oxygen vacancies conductive path along grain boundaries of the polycrystalline base. The creation of the filament is facilitated by the high concentration of vacancies at the grain boundaries that are oriented perpendicularly to the electrodes, as a direct consequence of the ZnO growth along the <i>c</i>-axis of the wurtzite lattice

    Polymeric 3D Printed Functional Microcantilevers for Biosensing Applications

    No full text
    In this study, we show for the first time the production of mass-sensitive polymeric biosensors by 3D printing technology with intrinsic functionalities. We also demonstrate the feasibility of mass-sensitive biosensors in the form of microcantilever in a one-step printing process, using acrylic acid as functional comonomer for introducing a controlled amount of functional groups that can covalently immobilize the biomolecules onto the polymer. The effectiveness of the application of 3D printed microcantilevers as biosensors is then demonstrated with their implementation in a standard immunoassay protocol. This study shows how 3D microfabrication techniques, material characterization, and biosensor development could be combined to obtain an engineered polymeric microcantilever with intrinsic functionalities. The possibility of tuning the composition of the starting photocurable resin with the addition of functional agents, and consequently controlling the functionalities of the 3D printed devices, paves the way to a new class of mass-sensing microelectromechanical system devices with intrinsic properties
    corecore