19,024 research outputs found

    Hydromagnetic Taylor--Couette flow: wavy modes

    Get PDF
    We investigate magnetic Taylor--Couette flow in the presence of an imposed axial magnetic field. First we calculate nonlinear steady axisymmetric solutions and determine how their strength depends on the applied magnetic field. Then we perturb these solutions to find the critical Reynolds numbers for the appearance of wavy modes, and the related wavespeeds, at increasing magnetic field strength. We find that values of imposed magnetic field which alter only slightly the transition from circular--Couette flow to Taylor--vortex flow, can shift the transition from Taylor--vortex flow to wavy modes by a substantial amount. The results are compared against onset in the absence of a magnetic field.Comment: 12 pages, 8 figures. To appear in J. Fluid Mech. To appear in J. Fluid Mec

    Scarring in open quantum systems

    Get PDF
    We study scarring phenomena in open quantum systems. We show numerical evidence that individual resonance eigenstates of an open quantum system present localization around unstable short periodic orbits in a similar way as their closed counterparts. The structure of eigenfunctions around these classical objects is not destroyed by the opening. This is exposed in a paradigmatic system of quantum chaos, the cat map.Comment: 4 pages, 4 figure

    OUTLINE OF A GENERALLY COVARIANT QUANTUM FIELD THEORY AND A QUANTUM THEORY OF GRAVITY

    Get PDF
    We study a tentative generally covariant quantum field theory, denoted the T-Theory, as a tool to investigate the consistency of quantum general relativity. The theory describes the gravitational field and a minimally coupled scalar field; it is based on the loop representation, and on a certain number of quantization choices. Four-dimensional diffeomorphism-invariant quantum transition probabilities can be computed from the theory. We present the explicit calculation of the transition probability between two volume eigenstates as an example. We discuss the choices on which the T-theory relies, and the possibilities of modifying them.Comment: Latex file, 33 page

    Simultaneous electronic and the magnetic excitation of a ferromagnet by intense THz pulses

    Full text link
    The speed of magnetization reversal is a key feature in magnetic data storage. Magnetic fields from intense THz pulses have been recently shown to induce small magnetization dynamics in Cobalt thin film on the sub-picosecond time scale. Here, we show that at higher field intensities, the THz electric field starts playing a role, strongly changing the dielectric properties of the cobalt thin film. Both the electronic and magnetic responses are found to occur simultaneously, with the electric field response persistent on a time scale orders of magnitude longer than the THz stimulu

    Current behavior of a quantum Hamiltonian ratchet in resonance

    Get PDF
    We investigate the ratchet current that appears in a kicked Hamiltonian system when the period of the kicks corresponds to the regime of quantum resonance. In the classical analogue, a spatial-temporal symmetry should be broken to obtain a net directed current. It was recently discovered that in quantum resonance the temporal symmetry can be kept, and we prove that breaking the spatial symmetry is a necessary condition to find this effect. Moreover, we show numerically and analytically how the direction of the motion is dramatically influenced by the strength of the kicking potential and the value of the period. By increasing the strength of the interaction this direction changes periodically, providing us with a non-expected source of current reversals in this quantum model. These reversals depend on the kicking period also, though this behavior is theoretically more difficult to analyze. Finally, we generalize the discussion to the case of a non-uniform initial condition.Comment: 6 pages, 4 figure

    Localization of resonance eigenfunctions on quantum repellers

    Full text link
    We introduce a new phase space representation for open quantum systems. This is a very powerful tool to help advance in the study of the morphology of their eigenstates. We apply it to two different versions of a paradigmatic model, the baker map. This allows to show that the long-lived resonances are strongly scarred along the shortest periodic orbits that belong to the classical repeller. Moreover, the shape of the short-lived eigenstates is also analyzed. Finally, we apply an antiunitary symmetry measure to the resonances that permits to quantify their localization on the repeller.Comment: 4 pages, 4 figure
    corecore