73 research outputs found

    Economic Evaluation of Different Organizational Models for the Management of Patients with Hepatitis C

    Get PDF
    BACKGROUND: Access to Directly Acting Antivirals (DAAs) for Hepatitis C Virus (HCV) treatment in Italy was initially restricted to severe patients. In 2017, AIFA expanded access to all patients, to achieve elimination by 2030.AIM: To investigate the impact of different hospitals’ organizational models on elimination timing, treatment capacity and direct costs.METHODS: Most Regional healthcare systems in Italy deploy a Center of Excellence (CoE) organizational model, where patients are referred to a single major hospital in the area, which is the only one that can prescribe and deliver DAAs. The study was conducted at Bergamo’s (Lombardy, Italy) Papa Giovanni XXIII hospital (PG-23), which deploys a Hub&Spoke model: the Hub (PG-23) prescribes and delivers DAAs while Spokes (four smaller hospitals) can only prescribe them. The study compares the two models (CoE vs. H&S). Patient journey and workloads were mapped and quantified through interviews with hospital stakeholders. Cost data were collected through the hospital’s IT system; the sample comprised 2,277 HCV patients, over one year.RESULTS: The study calculated the average cost to treat HCV patients (~ € 1,470 per patient). Key cost drivers are lab tests (60%) and specialist visits (30%). Over one year, H&S can treat 68% more patients than CoE. As deferred patients absorb up to 40% of total costs, the “Optimized” model was designed by streamlining specialists’ visits and involving general practitioners during follow-up. “Optimized” model increases treatment capacity and reduces costs of deferred patients by 72% vs CoE.CONCLUSION: The study demonstrates the importance of organizational models in efficiently achieving 2030 elimination

    Valorization of clinical trials from the Italian National Health Service perspective: definition and first application of a model to estimate avoided costs

    Get PDF
    Introduction: From the perspective of healthcare organizations and public health care systems, the value of a clinical trial can be assessed from a clinical and economical perspective. However, to date, there is no standardized model for systematically capturing the economic value of clinical trials at organizational and system levels. The aim of this study was to develop and test a methodology for estimating the avoided costs deriving from the management of patients as part of a clinical trial. Methods: Our methodology is based on the assumption that the economic value of a clinical trial derives from 1) the funding received by the experimental site from a trial's sponsor, and from 2) the cost avoided by the experimental site with the treatment of patients within a study and not according to standard care by the experimental site. Results: By applying the methodology to onco-hematological clinical trials conducted in two academic hospitals from 2011 to 2016, we demonstrate that savings between 2 million and 4 million euros were achieved over a five-year period. Thus, for every 1,000 euros invested by the pharmaceutical company into the clinical studies conducted at these hospitals, the hospitals saved on average 2,200 euros due to costs not incurred as a result of the trials. Conclusions: The study has proposed and tested a methodology for estimating the economic value of clinical trials by taking into account avoided costs deriving from the treatment of patients enrolled in sponsored trials. The study has proposed a management tool for healthcare institutions to govern clinical trials

    Combined fit to the spectrum and composition data measured by the Pierre Auger Observatory including magnetic horizon effects

    Get PDF
    The measurements by the Pierre Auger Observatory of the energy spectrum and mass composition of cosmic rays can be interpreted assuming the presence of two extragalactic source populations, one dominating the flux at energies above a few EeV and the other below. To fit the data ignoring magnetic field effects, the high-energy population needs to accelerate a mixture of nuclei with very hard spectra, at odds with the approximate E2^{-2} shape expected from diffusive shock acceleration. The presence of turbulent extragalactic magnetic fields in the region between the closest sources and the Earth can significantly modify the observed CR spectrum with respect to that emitted by the sources, reducing the flux of low-rigidity particles that reach the Earth. We here take into account this magnetic horizon effect in the combined fit of the spectrum and shower depth distributions, exploring the possibility that a spectrum for the high-energy population sources with a shape closer to E2^{-2} be able to explain the observations

    Status and Performance of the Underground Muon Detector of the Pierre Auger Observatory

    Get PDF

    The Fitting Procedure for Longitudinal Shower Profiles Observed with the Fluorescence Detector of the Pierre Auger Observatory

    Get PDF

    Studies of the mass composition of cosmic rays and proton-proton interaction cross-sections at ultra-high energies with the Pierre Auger Observatory

    Get PDF
    In this work, we present an estimate of the cosmic-ray mass composition from the distributions of the depth of the shower maximum (Xmax) measured by the fluorescence detector of the Pierre Auger Observatory. We discuss the sensitivity of the mass composition measurements to the uncertainties in the properties of the hadronic interactions, particularly in the predictions of the particle interaction cross-sections. For this purpose, we adjust the fractions of cosmic-ray mass groups to fit the data with Xmax distributions from air shower simulations. We modify the proton-proton cross-sections at ultra-high energies, and the corresponding air shower simulations with rescaled nucleus-air cross-sections are obtained via Glauber theory. We compare the energy-dependent composition of ultra-high-energy cosmic rays obtained for the different extrapolations of the proton-proton cross-sections from low-energy accelerator data

    Study of downward Terrestrial Gamma-ray Flashes with the surface detector of the Pierre Auger Observatory

    Get PDF
    The surface detector (SD) of the Pierre Auger Observatory, consisting of 1660 water-Cherenkov detectors (WCDs), covers 3000 km2 in the Argentinian pampa. Thanks to the high efficiency of WCDs in detecting gamma rays, it represents a unique instrument for studying downward Terrestrial Gamma-ray Flashes (TGFs) over a large area. Peculiar events, likely related to downward TGFs, were detected at the Auger Observatory. Their experimental signature and time evolution are very different from those of a shower produced by an ultrahigh-energy cosmic ray. They happen in coincidence with low thunderclouds and lightning, and their large deposited energy at the ground is compatible with that of a standard downward TGF with the source a few kilometers above the ground. A new trigger algorithm to increase the TGF-like event statistics was installed in the whole array. The study of the performance of the new trigger system during the lightning season is ongoing and will provide a handle to develop improved algorithms to implement in the Auger upgraded electronic boards. The available data sample, even if small, can give important clues about the TGF production models, in particular, the shape of WCD signals. Moreover, the SD allows us to observe more than one point in the TGF beam, providing information on the emission angle

    Update on the Offline Framework for AugerPrime and production of reference simulation libraries using the VO Auger grid resources

    Get PDF

    The dynamic range of the upgraded surface-detector stations of AugerPrime

    Get PDF
    The detection of ultra-high-energy cosmic rays by means of giant detector arrays is often limited by the saturation of the recorded signals near the impact point of the shower core at the ground, where the particle density dramatically increases. The saturation affects in particular the highest energy events, worsening the systematic uncertainties in the reconstruction of the shower characteristics. The upgrade of the Pierre Auger Observatory, called AugerPrime, includes the installation of an 1-inch Small PhotoMultiplier Tube (SPMT) inside each water-Cherenkov station (WCD) of the surface detector array. The SPMT allows an unambiguous measurement of signals down to about 250m from the shower core, thus reducing the number of events featuring a saturated station to a negligible level. In addition, a 3.8m2 plastic scintillator (Scintillator Surface Detector, SSD) is installed on top of each WCD. The SSD is designed to match the WCD (with SPMT) dynamic range, providing a complementary measurement of the shower components up to the highest energies. In this work, the design and performances of the upgraded AugerPrime surface-detector stations in the extended dynamic range are described, highlighting the accuracy of the measurements. A first analysis employing the unsaturated signals in the event reconstruction is also presented

    Measuring the muon content of inclined air showers using AERA and the water-Cherenkov detector array of the Pierre Auger Observatory

    Get PDF
    corecore