113 research outputs found

    Loss aversion and 5HTT gene variants in adolescent anxiety

    Get PDF
    Loss aversion, a well-documented behavioral phenomenon, characterizes decisions under risk in adult populations. As such, loss aversion may provide a reliable measure of risky behavior. Surprisingly, little is known about loss aversion in adolescents, a group who manifests risk-taking behavior, or in anxiety disorders, which are associated with risk-avoidance. Finally, loss aversion is expected to be modulated by genotype, particularly the serotonin transporter (SERT) gene variant, based on its role in anxiety and impulsivity. This genetic modulation may also differ between anxious and healthy adolescents, given their distinct propensities for risk taking. The present work examines the modulation of loss aversion, an index of risk-taking, and reaction-time to decision, an index of impulsivity, by the serotonin-transporter-gene-linked polymorphisms (5HTTLPR) in healthy and clinically anxious adolescents. Findings show that loss aversion (1) does manifest in adolescents, (2) does not differ between healthy and clinically anxious participants, and (3), when stratified by SERT genotype, identifies a subset of anxious adolescents who are high SERT-expressers, and show excessively low loss-aversion and high impulsivity. This last finding may serve as preliminary evidence for 5HTTLPR as a risk factor for the development of comorbid disorders associated with risk-taking and impulsivity in clinically anxious adolescents

    Extracellular vesicle microRNAs contribute to the osteogenic inhibition of mesenchymal stem cells in multiple myeloma

    Get PDF
    Osteolytic bone disease is the major complication associated with the progression of multiple myeloma (MM). Recently, extracellular vesicles (EVs) have emerged as mediators of MM-associated bone disease by inhibiting the osteogenic differentiation of human mesenchymal stem cells (hMSCs). Here, we investigated a correlation between the EV-mediated osteogenic inhibition and MM vesicle content, focusing on miRNAs. By the use of a MicroRNA Card, we identified a pool of miRNAs, highly expressed in EVs, from MM cell line (MM1.S EVs), expression of which was confirmed in EVs from bone marrow (BM) plasma of patients affected by smoldering myeloma (SMM) and MM. Notably,we found that miR-129-5p, which targets different osteoblast (OBs) differentiation markers, is enriched in MM-EVs compared to SMM-EVs, thus suggesting a selective packaging correlated with pathological grade. We found that miR-129-5p can be transported to hMSCs by MM-EVs and, by the use of miRNA mimics, we investigated its role in recipient cells. Our data demonstrated that the increase of miR-129-5p levels in hMSCs under osteoblastic differentiation stimuli inhibited the expression of the transcription factor Sp1, previously described as a positive modulator of osteoblastic differentiation, and of its target the Alkaline phosphatase (ALPL), thus identifying miR-129-5p among the players of vesicle-mediated bone disease

    The good and bad of nrf2: An update in cancer and new perspectives in COVID-19

    Get PDF
    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a well-known transcription factor best recognised as one of the main regulators of the oxidative stress response. Beyond playing a crucial role in cell defence by transactivating cytoprotective genes encoding antioxidant and detoxifying enzymes, Nrf2 is also implicated in a wide network regulating anti-inflammatory response and metabolic reprogramming. Such a broad spectrum of actions renders the factor a key regulator of cell fate and a strategic player in the control of cell transformation and response to viral infections. The Nrf2 protective roles in normal cells account for its anti-tumour and anti-viral functions. However, Nrf2 overstimulation often occurs in tumour cells and a complex correlation of Nrf2 with cancer initiation and progression has been widely described. Therefore, if on one hand, Nrf2 has a dual role in cancer, on the other hand, the factor seems to display a univocal function in preventing inflammation and cytokine storm that occur under viral infections, specifically in coronavirus disease 19 (COVID-19). In such a variegate context, the present review aims to dissect the roles of Nrf2 in both cancer and COVID-19, two widespread diseases that represent a cause of major concern today. In particular, the review describes the molecular aspects of Nrf2 signalling in both pathological situations and the most recent findings about the advantages of Nrf2 inhibition or activation as possible strategies for cancer and COVID-19 treatment respectively

    Parthenolide induces caspase-independent cell death in osteosarcoma, melanoma and breast cancer cells through the induction of oxidative stress.

    Get PDF
    Parthenolide, a sesquiterpene lactone found in European feverfew, is used in traditional medicine for its anti-inflammatory activity. In addition, parthenolide has been considered as a novel and effective anti-tumor agent because it induces cytotoxic effects in several tumor cell lines. Our studies demonstrated that parthenolide exerted strong cytotoxic effects in osteosarcoma MG63 and melanoma SK-Mel28 cells in culture. Staining with Hoechst 33342 revealed in most cells after brief periods of treatments (3-5h) chromatin condensation and fragmentation, while only few cells were PI-positive. Prolonging the treatment (5-14h) PI-positive cells strongly augmented, denouncing the increase of necrotic effects. All these effects were prevented by NAC, while caspase inhibitors were ineffective, thus suggesting a caspase-independent cell death. The study of the mechanism of action provided evidence that treatment with parthenolide rapidly stimulated (1-2 h) ROS generation, in particular by inducing activation of extracellular signal-regulated kinase1/2 and NADPH oxidase. This event caused depletion of thiol groups and glutathione, NF-\u3baB inhibition, JNK activation and cell detachment from the matrix. ROS generation together with mitochondrial accumulation of Ca2+ favoured dissipation of \u394\u3c8m, which appeared primarily determined by the opening of the permeability transition pore (PTP), since \u394\u3c8m loss was partially prevented by cyclosporin A, an inhibitor of PTP opening. Recently, we focused our attention on MDA-MB231 cells, a very aggressive and poorly differentiated breast cancer cell line, which is negative for estrogen receptor alpha. Preliminary results suggested that parthenolide induced cell death in these cells with a mechanism similar to that demonstrated in osteosarcoma and melanoma cells. Interestingly, we demonstrated that in MDA-MB231 cells the effect of parthenolide was potentiated by the addition of z-VAD-fmk, a general inhibitor of caspases. Studies are in progress to elucidate the mechanism of this interaction which could suggest new strategies for the treatment of ER-\u3b1 negative breast cancer

    The beneficial effects of essential oils in anti-obesity treatment

    Get PDF
    Obesity is a complex disease caused by an excessive amount of body fat. Obesity is a medical problem and represents an important risk factor for the development of serious diseases such as insulin resistance, type 2 diabetes, cardiovascular disease, and some types of cancer. Not to be overlooked are the psychological issues that, in obese subjects, turn into very serious pathologies, such as depression, phobias, anxiety, and lack of self-esteem. In addition to modifying one’s lifestyle, the reduction of body mass can be promoted by different natural compounds such as essential oils (EOs). EOs are mixtures of aromatic substances produced by many plants, particularly in medicinal and aromatic ones. They are odorous and volatile and contain a mixture of terpenes, alcohols, aldehydes, ketones, and esters. Thanks to the characteristics of the various chemical components present in them, EOs are used in the food, cosmetic, and pharmaceutical fields. Indeed, it has been shown that EOs possess great antibiotic, anti-inflammatory, and antitumor powers. Emerging results also demonstrate the anti-obesity effects of EOs. We have examined the main data obtained in experimental studies and, in this review, we summarize the effect of EOs in obesity and obesityrelated metabolic diseases

    Okadaic acid-Parthenolide combination at subtoxic doses induces potent synergistic apoptotic effects in human retinoblastoma Y79 cells by upregulating PTEN.

    Get PDF
    Retinoblastoma is the most common intraocular malignancy afflicting children. The incidence is higher in developing countries, where treatment is limited and long-term survival rates are low. Vincristine, etoposide, and carboplatin -the agents commonly used in the treatment of retinoblastoma- determine side effects causing significant morbidity to pediatric patients and significantly limiting dosing. Thus, identifying new drugs and molecular targets to facilitate the development of novel therapeutics, and finding natural drug combinations to kill cancer cells by synergistically acting at subtoxic doses, may be a good goal. Here, we investigated the effects of two natural compounds, okadaic acid (OKA) and parthenolide (PN), in human retinoblastoma Y79 cells. We showed that OKA/PN combination at subtoxic doses induces potent synergistic apoptotic effects accompanied by decrease in p-Akt, increase in the stabilized p53 forms and potent decrease in pS166\u2013Mdm2. We also showed the key involvement of PTEN which, after OKA/PN treatment, potently increased before p53, suggesting that p53 activation was under PTEN action. PTEN-knockdown increased p-Akt/ pS166Mdm2 over basal levels and significantly lowered p53, while OKA/PN treatment failed both to lower p-Akt and pS166\u2013Mdm2 and to increase p53 below/over their basal levels respectively. OKA/PN treatment potently increased ROS levels while decreased those of GSH. Reducing cellular GSH by butathionine-sulfoximine treatment significantly anticipated the cytotoxic effect exerted by OKA/PN. The effects of OKA/PN treatment on both GSH content and cell viability were less pronounced in PTEN silenced cells than in control cells. Our study reports for the first time both a synergistic apoptotic action between OKA and PN and the involvement of PTEN as key player in the apoptotic mechanism in human retinoblastoma Y79 cells. The results provide strong suggestion for combined inhibition of the PTEN/Akt/Mdm2/p53 pathway

    In human retinoblastoma Y79 cells okadaic acid\u2013parthenolide co-treatment induces synergistic apoptotic effects, with PTEN as a key player.

    Get PDF
    Retinoblastoma is the most common intraocular malignancy of childhood. In developing countries, treatment is limited, long-term survival rates are low and current chemotherapy causes significant morbidity to pediatric patients and significantly limits dosing. Therefore there is an urgent need to identify new therapeutic strategies to improve the clinical outcome of patients with retinoblastoma. here, we investigated the effects of two natural compounds okadaic acid (OKa) and parthenolide (PN) on human retinoblastoma Y79 cells. For the first time we showed that OKa/PN combination at subtoxic doses induces potent synergistic apoptotic effects accompanied by lowering in p-akt levels, increasing in the stabilized forms of p53 and potent decrease in ps166-Mdm2. We also showed the key involvement of PTeN which, after OKa/PN treatment, potently increased before p53, thus suggesting that p53 activation was under PTeN action. Moreover, after PTEN-knockdown p-akt/ ps166Mdm2 increased over basal levels and p53 significantly lowered, while OKa/PN treatment failed both to lower p-akt and ps166-Mdm2 and to increase p53 below/over their basal levels respectively. OKa/PN treatment potently increased ROs levels whereas decreased those of Gsh. Reducing cellular Gsh by l-butathionine-[s,R]-sulfoximine treatment significantly anticipated the cytotoxic effect exerted by OKa/ PN. Furthermore, the effects of OKa/PN treatment on both Gsh content and cell viability were less pronounced in PTeN silenced cells than in control cells. The results provide strong suggestion for combining a treatment approach that targets the PTeN/akt/Mdm2/p53 pathway
    corecore