11,457 research outputs found
Linear laser diode arrays for improvement in optical disk recording for space stations
The design and fabrication of individually addressable laser diode arrays for high performance magneto-optic recording systems are presented. Ten diode arrays with 30 mW cW light output, linear light vs. current characteristics and single longitudinal mode spectrum were fabricated using channel substrate planar (CSP) structures. Preliminary results on the inverse CSP structure, whose fabrication is less critically dependent on device parameters than the CSP, are also presented. The impact of systems parameters and requirements, in particular, the effect of feedback on laser design is assessed, and techniques to reduce feedback or minimize its effect on systems performance, including mode-stabilized structures, are evaluated
High-power AlGaAs channeled substrate planar diode lasers for spaceborne communications
A high power channeled substrate planar AlGaAs diode laser with an emission wavelength of 8600 to 8800 A was developed. The optoelectronic behavior (power current, single spatial and spectral behavior, far field characteristics, modulation, and astigmatism properties) and results of computer modeling studies on the performance of the laser are discussed. Lifetest data on these devices at high output power levels is also included. In addition, a new type of channeled substrate planar laser utilizing a Bragg grating to stabilize the longitudinal mode was demonstrated. The fabrication procedures and optoelectronic properties of this new diode laser are described
Improving the Reliability and Modal Stability of High Power 870 nm AlGaAs CSP Laser Diodes for Applications to Free Space Communication Systems
The operating characteristics (power-current, beam divergence, etc.) and reliability assessment of high-power CSP lasers is discussed. The emission wavelength of these lasers was optimized at 860 to 880 nm. The operational characteristics of a new laser, the inverse channel substrate planar (ICSP) laser, grown by metalorganic chemical vapor deposition (MOCVD), is discussed and the reliability assessment of this laser is reported. The highlights of this study include a reduction in the threshold current value for the laser to 15 mA and a degradation rate of less than 2 kW/hr for the lasers operating at 60 mW of peak output power
Optimal, reliable estimation of quantum states
Accurately inferring the state of a quantum device from the results of
measurements is a crucial task in building quantum information processing
hardware. The predominant state estimation procedure, maximum likelihood
estimation (MLE), generally reports an estimate with zero eigenvalues. These
cannot be justified. Furthermore, the MLE estimate is incompatible with error
bars, so conclusions drawn from it are suspect. I propose an alternative
procedure, Bayesian mean estimation (BME). BME never yields zero eigenvalues,
its eigenvalues provide a bound on their own uncertainties, and it is the most
accurate procedure possible. I show how to implement BME numerically, and how
to obtain natural error bars that are compatible with the estimate. Finally, I
briefly discuss the differences between Bayesian and frequentist estimation
techniques.Comment: RevTeX; 14 pages, 2 embedded figures. Comments enthusiastically
welcomed
Evaluation of a weighting approach for performing sensitivity analysis after multiple imputation.
BACKGROUND: Multiple imputation (MI) is a well-recognised statistical technique for handling missing data. As usually implemented in standard statistical software, MI assumes that data are 'Missing at random' (MAR); an assumption that in many settings is implausible. It is not possible to distinguish whether data are MAR or 'Missing not at random' (MNAR) using the observed data, so it is desirable to discover the impact of departures from the MAR assumption on the MI results by conducting sensitivity analyses. A weighting approach based on a selection model has been proposed for performing MNAR analyses to assess the robustness of results obtained under standard MI to departures from MAR. METHODS: In this article, we use simulation to evaluate the weighting approach as a method for exploring possible departures from MAR, with missingness in a single variable, where the parameters of interest are the marginal mean (and probability) of a partially observed outcome variable and a measure of association between the outcome and a fully observed exposure. The simulation studies compare the weighting-based MNAR estimates for various numbers of imputations in small and large samples, for moderate to large magnitudes of departure from MAR, where the degree of departure from MAR was assumed known. Further, we evaluated a proposed graphical method, which uses the dataset with missing data, for obtaining a plausible range of values for the parameter that quantifies the magnitude of departure from MAR. RESULTS: Our simulation studies confirm that the weighting approach outperformed the MAR approach, but it still suffered from bias. In particular, our findings demonstrate that the weighting approach provides biased parameter estimates, even when a large number of imputations is performed. In the examples presented, the graphical approach for selecting a range of values for the possible departures from MAR did not capture the true parameter value of departure used in generating the data. CONCLUSIONS: Overall, the weighting approach is not recommended for sensitivity analyses following MI, and further research is required to develop more appropriate methods to perform such sensitivity analyses
Antiferromagnetic Dimers of Ni(II) in the S=1 Spin-Ladder Na_2Ni_2(C_2O_4)_3(H_2O)_2
We report the synthesis, crystal structure and magnetic properties of the S=1
2-leg spin-ladder compound Na_2Ni_2(C_2O_4)_3(H_2O)_2. The magnetic properties
were examined by magnetic susceptibility and pulsed high field magnetization
measurements. The magnetic excitations have been measured in high field high
frequency ESR. Although the Ni(II) ions form structurally a 2-leg ladder, an
isolated dimer model consistently describes the observations very well. The
analysis of the temperature dependent magnetization data leads to a magnetic
exchange constant of J=43 K along the rungs of the ladder and an average value
of the g-factor of 2.25. From the ESR measurements, we determined the single
ion anisotropy to D=11.5 K. The validity of the isolated dimer model is
supported by Quantum Monte Carlo calculations, performed for several ratios of
interdimer and intradimer magnetic exchange and taking into account the
experimentally determined single ion anisotropy. The results can be understood
in terms of the different coordination and superexchange angles of the oxalate
ligands along the rungs and legs of the 2-leg spin ladder.Comment: 8 pages, 10 figure
Thermal and magnetic properties of integrable spin-1 and spin-3/2 chains with applications to real compounds
The ground state and thermodynamic properties of spin-1 and spin-3/2 chains
are investigated via exactly solved su(3) and su(4) models with physically
motivated chemical potential terms. The analysis involves the Thermodynamic
Bethe Ansatz and the High Temperature Expansion (HTE) methods. For the spin-1
chain with large single-ion anisotropy, a gapped phase occurs which is
significantly different from the valence-bond-solid Haldane phase. The
theoretical curves for the magnetization, susceptibility and specific heat are
favourably compared with experimental data for a number of spin-1 chain
compounds. For the spin-3/2 chain a degenerate gapped phase exists starting at
zero external magnetic field. A middle magnetization plateau can be triggered
by the single-ion anisotropy term. Overall, our results lend further weight to
the applicability of integrable models to the physics of low-dimensional
quantum spin systems. They also highlight the utility of the exact HTE method.Comment: 38 pages, 15 figure
- …
