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Abstract

Background: Multiple imputation (MI) is a well-recognised statistical technique for handling missing data. As
usually implemented in standard statistical software, MI assumes that data are ‘Missing at random’ (MAR); an
assumption that in many settings is implausible. It is not possible to distinguish whether data are MAR or ‘Missing
not at random’ (MNAR) using the observed data, so it is desirable to discover the impact of departures from the
MAR assumption on the MI results by conducting sensitivity analyses. A weighting approach based on a selection
model has been proposed for performing MNAR analyses to assess the robustness of results obtained under
standard MI to departures from MAR.

Methods: In this article, we use simulation to evaluate the weighting approach as a method for exploring possible
departures from MAR, with missingness in a single variable, where the parameters of interest are the marginal
mean (and probability) of a partially observed outcome variable and a measure of association between the
outcome and a fully observed exposure. The simulation studies compare the weighting-based MNAR estimates for
various numbers of imputations in small and large samples, for moderate to large magnitudes of departure from
MAR, where the degree of departure from MAR was assumed known. Further, we evaluated a proposed graphical
method, which uses the dataset with missing data, for obtaining a plausible range of values for the parameter that
quantifies the magnitude of departure from MAR.

Results: Our simulation studies confirm that the weighting approach outperformed the MAR approach, but it still
suffered from bias. In particular, our findings demonstrate that the weighting approach provides biased parameter
estimates, even when a large number of imputations is performed. In the examples presented, the graphical
approach for selecting a range of values for the possible departures from MAR did not capture the true parameter
value of departure used in generating the data.

Conclusions: Overall, the weighting approach is not recommended for sensitivity analyses following MI, and further
research is required to develop more appropriate methods to perform such sensitivity analyses.
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Background
The problem of missing data is frequently encountered
in clinical and epidemiological research, in particular, in
longitudinal cohorts with multiple waves of data collec-
tion [1–5]. Excluding individuals with missing data from
the statistical analysis (i.e. complete case analysis (CC))
can lead to biased inference since individuals with
complete records do not typically represent the study
population under investigation [6, 7].
Several statistical techniques have been developed in

recent decades to address the issue of missing data [8].
Multiple imputation (MI), which is widely available in
standard software packages (e.g. R [9], SAS [10] and
Stata [11]), is one of the most flexible approaches for
handling missing data [12–14].
MI begins by replacing the missing data with plausible

values by sampling multiple times from an imputation
model; thus, multiple completed (observed plus im-
puted) datasets are created. Each completed dataset is
then analysed separately using standard statistical
methods, and the resulting point and interval estimates
are combined using Rubin’s rules to obtain an overall
MI inference for the parameter(s) of interest [7, 15, 16].
The validity of estimates obtained from MI rests on a

key assumption concerning the mechanism underlying
the missing data. As usually implemented in standard
statistical software, MI assumes that data are ‘Missing At
Random’ (MAR), i.e. that the probability of missingness
does not depend on the missing data after conditioning
on the observed data. Contrary to this MAR assumption
it is often plausible in practice that differences in the
data distribution between individuals with missing items
and those with complete data cannot be explained by
the observed data alone, in which case the data are
‘Missing Not At Random’ (MNAR). Performing MI
under MAR when the actual missingness process is
MNAR may produce biased estimates [17].
Unfortunately, distinguishing between MAR and

MNAR data is not possible using the observed data as
by definition the reasons for missing data under MNAR
are not observed. Consequently, researchers have sug-
gested approaches to investigate the sensitivity of the MI
results to departures from the MAR assumption. Two
approaches that can be implemented within the MI
framework have been proposed: a weighting approach
based on a selection model [6, 18] and a pattern-mixture
approach [6, 19–21]. These methods are based on the
two general approaches to factorising the joint distribu-
tion of the response and missing data mechanism associ-
ated with the response: the selection model and the
pattern-mixture model [7, 22–26]. At present, most
available software packages do not include features for
conducting sensitivity analysis using the weighting ap-
proach within the suite of commands that are available

for performing MI. However, SAS (SAS/STAT 13.1 [27])
and R (SensMice package [28]) have recently introduced
the pattern-mixture approach for performing sensitivity
analyses to the MAR assumption.
The weighting approach is a specific application of the

selection model that has been developed within the MI
framework to assess the robustness of conclusions to an
assumed MNAR mechanism. This approach is an ap-
proximate and fast computational method for perform-
ing a ‘local’ sensitivity analysis [29] after implementing
MI, and typically deals with problems in which there is a
single variable with missing data [18]. Using the weight-
ing approach, the estimates obtained under the MAR as-
sumption from a standard MI procedure are re-weighted
in such a way that they reflect the MNAR mechanism.
In this paper we comprehensively evaluate the weight-

ing approach for performing a sensitivity analysis after
implementing the standard MI procedure under the
MAR assumption, and describe possible problems that
might arise from applying this approach. We assess the
proposed approach by estimating the marginal mean of
a partially observed variable and a measure of associ-
ation between the partially observed variable and a com-
pletely observed variable, across different numbers of
imputations and sample sizes, and where the degree of
departure from MAR vary from moderate to large.
The structure of this paper is as follows. We begin

with an overview of selection models and multiple
imputation. This is followed by an explanation of the
weighting approach and the theory behind this
method (which is based on importance sampling). We
also describe the graphical diagnostics proposed by
Carpenter et al. [18] for exploring the first condition
of importance sampling and then apply it to a single
simulated dataset. We evaluate the performance of
the weighting approach using simulation studies in
which we investigate whether the method provides
unbiased estimates of the parameter of interest. Then,
we discuss why the application of the method of im-
portance sampling in the weighting approach might
go wrong. We address the question of how to choose
the sensitivity parameter (i.e. a parameter representing
the extent of departure from MAR) and describe a
graphical method proposed by Héraud-Bousquet et al.
[30]. We critique the graphical method using the sin-
gle simulated dataset presented earlier and show that
there is no alternative to using subject-matter know-
ledge. Finally, we conclude with a discussion of the
weighting approach and its limitations.

Selection models
As mentioned earlier, the basis of the weighting approach
is a selection model. Before describing the weighting ap-
proach, we give a brief description of selection models.

Hayati Rezvan et al. BMC Medical Research Methodology  (2015) 15:83 Page 2 of 16



In order to draw inference about missing data when
the underlying missingness mechanism is MNAR, we
need a joint model for the complete data and the miss-
ing data mechanism [6, 29]. Let Y be a partially observed
outcome variable, X be a fully observed covariate and R
be a missing value indicator, where R =1 if Y is observed
and R = 0 otherwise. Then, the joint distribution of the
complete data and the missing data mechanism can be
written as

f ðY ;RjXÞ ¼ f ðYobs;Ymis;RjXÞ ð1Þ
where Yobs and Ymis represent the observed and missing
components of the outcome variable, respectively. The
joint distribution (1) can be represented as

f Y obs;Ymis;R Xj Þ ¼ f R Y obs; ;Ymis;Xj Þf Y obs;Ymis Xj Þððð
ð2Þ

which factorises the distribution of the complete data
and the missing data mechanism into a distribution of
the missing data mechanism (R) conditional on the ob-
served (Yobs) and missing data (Ymis), and the (marginal)
distribution of the complete data. This factorisation of
the joint distribution is known in the literature as the se-
lection model. In general, selection modelling requires
strong identifying assumptions because the data do not
contain information (since Ymis is not observed) about
the required conditional distribution of R. Additionally,
fitting these types of models requires complex computa-
tional algorithms and specific software for implementa-
tion [31–33]. Here we consider a selection model where
the missing data mechanism is dependent on the fully
observed X and partially observed Y:

logit½PrðR ¼ 1jX;Y Þ� ¼ f ðXÞ þ δY ð3Þ
In Equation (3), δ represents the change in the log-

odds of R = 1 (i.e. of observing Y) for a one-unit change
in Y holding X fixed, so this parameter represents the
extent of departure from the MAR assumption. Equiva-
lently, exp (δ) represents the relative change in the odds
of observing Y. Note that in general estimating δ from
the observed data is not possible since values of Y are
not observed when R = 0 [34].

Multiple imputation
We briefly describe the MI procedure for the partially
observed outcome variable Y and the fully observed co-
variate X defined in the previous section.
MI proceeds with replacing the values of the miss-

ing data Ymis by multiple (m) values drawn from the
posterior predictive distribution of the missing data
f(Ymis|Yobs, X). The standard analysis is then carried
out for each of the m completed datasets (observed
plus imputed), which results in m sets of parameter

estimates θ̂ j

� �
and associated estimated variances ((s.

e. (θj))
2). A combined estimate of the parameter of

interest θ̂MAR
� �

, along with its variance V θ̂MAR
� �� �

is then obtained using Rubin’s rules. The standard MI
estimate is given by:

θ̂MAR ¼ 1
m

Xm

j¼1
θ̂ j ð4Þ

where m is the number of imputations and θ̂ j is the par-
ameter estimate for the analysis of interest (which here-
after will be termed the ‘target analysis’) obtained from
the jth imputed dataset. The estimated variance of the
standard MI estimate V θ̂MAR

� �� �
allows for between–

and within–imputation variability:

V θ̂MAR
� �

¼ VW θ̂MAR
� �

þ 1þ 1
m

� �

� VB θ̂MAR
� �

ð5Þ

where the estimated within-imputation variance is VW

θ̂MAR
� �

¼ 1
m

Xm

j¼1
s:e: θj

� �� �2
and the estimated

between-imputation variance is VB θ̂MAR
� �

¼ 1
m−1Xm

j¼1
θ̂ j−θ̂

MAR
� �2

[7].

The weighting approach
In the weighting approach, estimates obtained from the
imputed datasets generated under the MAR assumption,
via the standard MI procedure, are re-weighted in order
to provide an overall parameter estimate that would be
valid if the data were a particular form of MNAR [18].
In this approach, the weights given to the parameter es-

timates from each of the imputed datasets θ̂ j

� �
are cal-

culated based on the assumed magnitude of departure
from MAR (δ), which might be chosen by expert judge-
ment based on content-matter knowledge [35–37]. Al-
ternatively, a researcher can examine how an inference
about the parameter of interest changes as δ varies over
a plausible range of values. δ = 0 indicates that the miss-
ing data mechanism is MAR; as δ moves away from zero
there is a greater departure from MAR, or in other
words a larger degree of MNAR. The weights are calcu-
lated as follows:

~wj δð Þ ¼ exp −δΣi∈IY Y ij
� � ð6Þ

where Yij indicates the imputed value of Y in the com-
pleted dataset j for the ith individual and IY is the set of
individuals with Y missing. A single weight ð~wjðδÞÞ is
calculated for the jth imputed dataset according to the
degree of departure from MAR (δ) and the sum of the
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imputed values in that dataset. In particular, when δ > 0,
the imputed dataset(s) with the smallest sum of imputed
values is up-weighted, and when δ < 0, the imputed data-
set(s) with the largest sum of imputed values is down-
weighted. These are then normalised as follows:

wjðδÞ ¼
~wjðδÞXm

j¼1
~wjðδÞ

ð7Þ

Note that following Carpenter et al. [18], Y is assumed
to be an outcome variable for ease of exposition. It is
unclear how this method would extend to missingness
in multiple variables, except for the case where only one
of the variables is MNAR [18]. The MNAR estimate is
then defined as:

θ̂MNAR δð Þ ¼
Xm

j¼1
wj δð Þ � θ̂ j ð8Þ

The estimated variance of θ̂MNAR δð Þ is calculated, as-
suming weighted versions of the within- and between-
imputation variances:

V θ̂MNAR δð Þ
� �

≈VW θ̂MNAR δð Þ
� �

þ 1þ 1
m

� �

� VB θ̂MNAR δð Þ
� �

ð9Þ

where VW θ̂MNAR δð Þ
� �

¼
Xm

j¼1
wj δð Þ � s:e: θj

� �� �2
and

VB θ̂MNAR δð Þ
� �

¼
Xm

j¼1
wj δð Þ θ̂ j−θ̂

MNAR δð Þ
� �2

[6, 18].

Importance sampling
The weighting approach is based on the method of import-
ance sampling [38, 39]. In this section we briefly explain
how the weighting approach, as defined in the previous sec-
tion, is an application of importance sampling.
The general idea of importance sampling is to estimate a

property of a distribution of interest (e.g. ‘g’) by weighting
the observations from a similar alternative distribution (e.g.
‘f ’). According to the principles of importance sampling we
can draw samples from the ‘f ’ distribution to inform about
‘g’ if:

� f supports the distribution of g, i.e. the support of f
(defined as the range on which f > 0) includes the
support of g, and

� the ratio g/f, known as the importance ratio or
importance weight, is bounded by a constant
quantity.

In simple words, the latter condition indicates that the
importance ratios should not be extremely large. However,
in some situations, a large proportion of importance
weights take small values and a few importance weights
take very large values. In such cases, applying importance

sampling may introduce bias. In the literature, it has been
suggested to examine the histogram of the logarithms of
the importance weights to explore problems regarding high
importance weights [38].
This theory was applied within the MI framework [18],

in which ‘g’ was identified with the imputation distribution
under MNAR and ‘f ’ with the imputation distribution
under MAR. Returning to the example explained earlier,
where Y is a variable with some values missing, with a
missingness indicator R, which is 1 if Y is observed and 0
otherwise, and X is a fully observed variable, for this case,
‘g’ and ‘f ’ correspond to f[Y|X, R = 0] (a desired distribution
that we wish to draw from (i.e. impute under MNAR))
and f[Y|X, R = 1] (the imputation distribution under
MAR), respectively. Carpenter et al. [18] claimed that,
under a particular form of the logistic regression model of
R on X and Y in Equation (3), the importance weight (i.e.

the ratio g
f ¼ f ½Y X;R¼0j �

f Y X;R¼1j �½ ) for imputation j is ~wj δð Þ ¼ exp

−δΣi∈IY Y ij
� �

(Equation (6)), which depends on the magni-
tude of departure from MAR (δ) and the sum of imputed
values (Yi) in the imputation j.
These weights are used to re-weight the estimates ob-

tained from each imputed dataset under MAR to pro-
vide an overall estimate under MNAR. Carpenter and
Kenward [6] claimed that, within the MI framework, the
two conditions of importance sampling described above
equate to:

� the MNAR estimate θ̂MNAR δð Þ
� �

needs to be within
the range of the MAR estimates from each of the
imputed dataset θ̂ js

� �
since the MNAR estimate is

the re-weighted average of the MAR estimates (i.e.
there is a shared support for the distribution of the
parameter of interest under MNAR and MAR), and

� the ratio of the distribution of imputations under
MNAR to the distribution of imputations under
MAR must be bounded.

They argued that if the proposed conditions of import-
ance sampling are satisfied, the accuracy of the estimate
under the MNAR assumption and its associated variance
will improve with increasing the number of imputations
(m→∞). According to their suggestion the number of im-
putations should be large (m ≥ 50) when using the weight-
ing approach following MI. They concluded that this
approach is suitable for performing a local sensitivity ana-
lysis after MI under MAR to account for missing data that
are weakly MNAR.

Graphical diagnostics
Carpenter et al. [18] suggested two plots to evaluate
the first condition of importance sampling. The first
is a plot of the normalised weights (wj(δ)) against the
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estimates obtained from each imputed dataset under

MAR θ̂ j

� �
, which enables the researcher to identify

which of the imputed datasets takes a relatively high
weight. The horizontal line in this plot is fixed at 1

m ,
which represents the scenario where the imputations
have the same weights (i.e. MAR mechanism (δ = 0)),
and the vertical dashed line corresponds to the
pooled MI estimate under MAR.
The second is a plot of the running weighted estimate

under MNAR θ̂MNAR
� �

against the number of imputa-

tions (m), with the estimates obtained from each im-

puted dataset under MAR θ̂ j

� �
presented on the right

y-axis. If the running weighted MNAR estimate is head-
ing towards the edge of the range of MI estimates or it
contains some evident vertical steps, further attention is
required to determine why this is the case.
Unfortunately, assessing the second condition of im-

portance sampling is possible only in artificial or simu-
lated examples, where the values of the missing
observations are known. Some possible causes of failure
of this condition will be addressed in the section “Ex-
planation of the method failure”.

Methods
In this section, the procedures for generating and analys-
ing dataset(s) used in the paper are explained in detail.
In brief, we initially illustrate the weighting approach

and the graphical diagnostics described above using a
single simulated dataset, where the missing data in the
outcome are weakly MNAR (i.e. small departure from
MAR (δ =0.2)). Next, we comprehensively evaluate the
performance of the weighting approach through simula-
tion studies, where we examine whether by increasing
the number of imputed datasets it is possible to obtain
unbiased estimates for large (δ =1) to moderate (δ = 0.5)
magnitudes of departure from the MAR assumption (as
opposed to the weak departure from MAR presented in
the previous example).

Model for simulated data
We use the following models for generating data
throughout the paper. In the first model, pairs of obser-
vations X and Y are generated from a bivariate normal
distribution, with each variable having mean 0 and vari-
ance 1, and the correlation between the two equal to 0.5.
X is a fully observed covariate but the values of the out-
come Y are made missing under MNAR using the par-
ticular form of the logistic regression in Equation (3), i.e.
logit[Pr(R = 1|X,Y)] = α + γX + δY. We assume that the
target analysis of interest is to estimate the marginal
mean of Y (μ) and the association between Y and X,

represented by the coefficient for X (β1) in the linear re-
gression model:

Y ¼ β0 þ β1X þ ε ð10Þ

In the complete data, the former parameter of interest
is obtained by calculating the sample mean of Y, and the
latter is estimated using the ordinary least squares
method.
In the second model, we let Y be a binary outcome vari-
able and X be a normally distributed covariate. Similar
to the previous model, we set Y observations to missing
under MNAR mechanism using Equation (3). For our
target analysis, we estimate the marginal proportion of
the outcome, as well as the regression coefficient (Φ1) in
the logistic regression model:

logit Yð Þ ¼ Φ0 þΦ1X ð11Þ
In the fully observed dataset, we obtain the former

parameter by calculating the sample proportion of Y (i.e.
the proportion of successes in the sample (Y = 1)), and
estimate the latter using the maximum-likelihood
method.

Procedures for generating a single dataset
In order to illustrate the weighting approach, we first
generate a single dataset with 500 observations under
the first model described above. We set γ = 1, δ = 0.2 and
α = 0.12 in Equation (3), so that the probability of ob-
serving Y observations was equal to 0.5 and that the de-
parture from MAR was minimal.

Simulation procedures for generating 1000 datasets
We investigate the performance of the weighting ap-
proach by conducting a series of simulation studies.
Using the first model for generating data described
above, we simulated 1000 datasets of 100 observations.
In the first scenario that we examine, we set α = 0, γ = 1
and δ = 1 (a relatively large departure from MAR), and
in the second scenario, α = 0, γ = 0.8 and δ = 0.5 (a mod-
erate departure from MAR) to achieve approximately
50 % missingness in the outcome Y for each of the 1000
simulated datasets.
In order to quantify how strongly the probability of

missingness depends on X and Y, a Receiver Operating
Characteristic (ROC) analysis was carried out [40]. The
area under the ROC curve (AUROC) measures how
strongly X and Y relate to R: AUROC = 0.5 indicates
MCAR, while AUROC = 1 means that X and Y com-
pletely determine missingness. This analysis resulted in a
mean AUROC of 0.84 for δ = 1, and 0.77 for δ = 0.5 over
the 1000 simulations.
We conducted a similar simulation study using the sec-

ond model for generating data described above, imposing
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a 50 % missing data rate on Y, where we set α = −0.4, γ = 1
and δ = 1 for the first scenario presenting a large departure
from MAR, and α = −0.1, γ = 1 and δ = 0.5 for the second
scenario presenting a moderate departure from MAR. The
mean area under the curve estimated from the ROC ana-
lysis of the 1000 simulated datasets was 0.78 for δ =1, and
0.76 for δ = 0.5.

Statistical approaches for handling missing data
The parameters of interest in our single simulated data-
set and simulation studies were estimated using (i)
complete case analysis, (ii) MI to account for the missing
data under MAR, and (iii) the weighting approach to ac-
count for the missing data under MNAR.

i. Complete case analysis
In the complete case analysis individuals whose Y values
were assigned to missing were excluded and the stand-
ard analysis was performed on records with observed Y’s
(i.e. ~ 50 % of the total cases).

ii. Multiple imputation
Multiple imputation was implemented with m imputed
datasets under the MAR assumption. Missing data in the
outcome variable Y were imputed multiple times using a
linear or logistic regression model on X with m = 5, 10, 50,
100, 500 and 1000 imputations. This wide range of m’s
was selected to include low values of m, which were sug-
gested in the early literature [16], up to much larger values
over and above the current recommendation [41–43]. Im-
portantly, as suggested by Carpenter and Kenward [6], the
weighting approach requires m ≥ 50. Of note, for the sin-
gle simulated dataset, we chose a moderate number of im-
putations m = 300 to impute the missing Y observations.
The imputation and analysis models were the same

throughout this paper. Imputation was performed using
‘mi impute regress’ for a normally distributed outcome
and ‘mi impute logit’ for a binary outcome, and Rubin’s
rules were implemented using ‘mi estimate’ in Stata ver-
sion 12.1 [11].

iii. The weighting approach
Sensitivity analysis was performed using the weighting
approach within the MI framework by re-weighting the

estimates obtained from MI under MAR. The departure
from the MAR mechanism used in the MNAR analysis
was δ = 0.2 for the single simulated dataset and δ =1 and
0.5 for the simulation studies, as used for generating the
data. Of note, we return later in the section “Graphical
method for selecting δ” to discuss whether we are able
to select plausible values for δ using a graphical method
proposed by Héraud-Bousquet et al. [30].
The estimates of the parameters of interest for the full

dataset (i.e. before assigning missing data to Y) were av-
eraged over the 1000 simulations (i.e. ‘Full dataset (be-
fore deletion)’ in Tables 2, 3, 4 and 5). The performance
of the different statistical approaches for handling miss-
ing data was examined by 1) comparing the average par-
ameter estimate over the 1000 datasets with incomplete
data to the true value used to generate the data (i.e. zero
for the marginal mean and 0.5 for the measure of associ-
ation) and 2) computing empirical Monte Carlo standard
errors (i.e. the Monte Carlo standard deviation of the
point estimate).
See Additional file 1: Figure S1 and Additional file 2:

Figure S2 for a summary of the steps taken for conduct-
ing the simulation study for the normally distributed
and the binary outcome, respectively.

Results
Illustration using a single simulated dataset
Complete case analysis and MI under MAR (with m = 300)
were used for handling missing data and the weighting ap-
proach was performed as a sensitivity analysis under
MNAR following MI (setting δ = 0.2). Table 1 shows the
empirical mean and standard deviation of the estimated pa-
rameters of interest for the different methods of handling
the missing data as well as for the full dataset before values
of Y were set to missing. According to the table, the esti-
mated marginal mean of Y (μ) and the coefficient β1 from
the linear regression of Y on X in the full dataset are very
close to their true values (0 and 0.5, respectively). Under
the complete case analysis, these estimates are far away
from the full data values with large differences mainly in
the estimate of the marginal mean as expected. The abso-
lute difference of the MI estimates under MAR from the
estimated values of the parameters of interest from the full
dataset are 0.129 (i.e. 2.93 standard errors) and 0.074 (i.e.

Table 1 Estimates of the marginal mean of the normally distributed outcome variable and the regression coefficient under four
analysis methods for a single simulated dataset (n = 500, m = 300, δ = 0.2)

μ β

Parameter estimate SE Parameter estimate SE

Full dataset (before deletion) −0.007 0.044 0.501 0.039

Complete Case Analysis 0.282 0.057 0.426 0.058

Multiple Imputation under MAR 0.122 0.058 0.427 0.058

Sensitivity analysis under MNAR 0.022 0.045 0.518 0.046
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1.89 standard errors), for the marginal mean of Y and the
coefficient β1, respectively. The estimate from the sensitivity
analysis under MNAR is 0.022 for the marginal mean and
0.518 for the measure of association, which are quite close
to the values from the full dataset. This occurs as a result of
using the true value of δ in the analysis; however, this can-
not be expected in practice because the value of δ is
unknown.
Graphical diagnostics explained earlier were applied in

this single simulated dataset. As seen in Fig. 1, there is no
extreme weight observed across the imputed datasets and
the largest normalised weight is around 0.26 (left panel).
In addition, the vertical drop observed in the running
mean of the MNAR estimate at the early imputations ap-
pears to settle down as the number of imputations in-
creases and the estimate is not at the edge of the range of
the 300 MAR estimates (right panel). See Additional file 3:
Figure S3, for graphical diagnostics for the marginal mean
of the Y variable; for this parameter the running mean of
the MNAR estimate is at the edge of the MAR estimates.

Results of simulation experiment
The estimates of the marginal mean of the partially ob-
served normally distributed outcome variable using
complete case analysis, MI under MAR, and the sensitiv-
ity analysis using the weighting approach under MNAR
are shown in Table 2. The table presents the averaged
estimates across the 1000 simulated datasets for the

different values of m. Note that since the estimates based
on the full dataset and complete case analysis do not de-
pend on the number of imputations, their corresponding
results are shown only in the first column of the Table
(i.e. m = 5).
According to Table 2, estimates obtained from the

complete case analysis and MI under MAR overestimate
the true value, as expected. The MNAR estimates of the
marginal mean using the weighting method reduce as
the number of imputations increase, but importantly do
not converge to the value of the true mean as m
increases.
Table 3 presents estimates of the regression coefficient

obtained using the four methods. As seen in the table,
the mean estimate of β1 across the 1000 simulated data-
sets for the full dataset is close to 0.5, as expected. The
estimates for the complete case analysis and MI are
similar and both are downwardly biased. The estimates
under the MNAR sensitivity analysis increase with the
number of imputations, and again do not converge to
the true value of β1 as m→∞. The results show that the
absolute bias in the sensitivity analysis reduces to 0.028
(or ~5 %) after 10 imputations, but then rises with the
number of imputations to a value of 0.135 (or ~27 %)
for 1000 imputations.
Further examination was carried out for estimating the

marginal mean of the partially observed normally dis-
tributed outcome variable and the regression coefficient

Fig. 1 Graphical diagnostics (n = 500, m = 300, δ(True) = 0.2, β(True) = 0.5, β̂ ðSimulateÞ =0.501). Left panel: the normalised weight (calculated using

Equation (7)) for each of the 300 imputed datasets, plotted against the estimated regression coefficient of Y on X obtained under MAR. The
vertical dashed line corresponds to the pooled MI estimate under MAR. Right panel: the running mean of the MNAR estimate of the regression
coefficient of Y on X, plotted against the number of imputed datasets. The estimates of the same coefficient obtained under MAR are plotted on
the right y-axis for each of the 300 imputed datasets. The horizontal dashed line represents the pooled MI estimate under MAR
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by 1) increasing the sample size of the simulated data-
sets from 100 to 1000; and 2) reducing the magnitude of
departure from the MAR assumption (δ) from 1 to 0.5.
A summary of the results for different scenarios is pre-
sented in the following graphs. According to the results
presented in Fig. 2:

i. The parameter estimates decrease for the marginal
mean and increase for the regression coefficient
β̂1

� �
as the number of imputations increases. The

estimates appear to be converging to a single biased
estimate (on the original scale); except potentially
for the scenario with a large sample size (n = 1000)
and a moderate departure from MAR (δ = 0.5).
However, based on the observed patterns, it seems
that by applying more imputations, the estimates
obtained from a large n and moderate δ will move
further away from the true value if m exceeds 1000.

ii. Surprisingly, the parameter estimates are lower for
the marginal mean (left panel) and higher for the
measure of association (right panel) for δ = 0.5
compared with δ = 1. It seems that we are observing
two opposing effects here. One possible explanation
for this observation might be the fact that while
increasing δ from 0.5 to 1 in the MNAR analysis
increases the potential for extreme weights,
increasing δ in the data generating mechanism
reduces the left-hand tail of the observed outcome
distribution and thus, reduces the potential for
extreme weights.

Further investigation
We extended our simulation study to account for a par-
tially observed binary outcome variable and a fully ob-
served continuous covariate. The estimates of the
marginal proportion of the binary outcome and the re-
gression coefficient obtained from complete case ana-
lysis, MI under MAR, and the sensitivity analysis using
the weighting approach under MNAR are summarised
in Tables 4 and 5, respectively. It is apparent from
Tables 4 and 5 that the results of the complete case ana-
lysis and MI under MAR are biased, as expected. Again
the MNAR estimates decrease for estimating the mar-
ginal proportion of the outcome variable as the number
of imputations increase and do not converge towards
the true value of the parameter (Table 4). Also, the esti-
mates from the sensitivity analysis for the regression co-
efficient increase as the number of imputations
increases, thus moving further away from the true value
(Table 5).
Additional examination was carried out when the sam-

ple size of the simulated data was increased from 100 to
1000 and the degree of departure from MAR reduced
from 1 to 0.5. Again the results show biased estimates
using complete case analysis and MI under MAR for
both the marginal proportion of the partially observed
outcome and the measure of association. Figure 3 pre-
sents the parameter estimates of interest under MNAR
(left panel: marginal proportion of the outcome variable
and right panel: exposure-outcome relationship) against
the number of imputations, when the sample sizes are

Table 2 Estimates of the marginal mean of the normally distributed outcome variable under four analysis methods (n = 100, δ = 1);
True value = 0

Number of imputations (m)

5 10 50 100 500 1000

Full dataset (before deletion) −0.003

Complete Case Analysis 0.489

Multiple Imputation under MAR 0.323 0.322 0.322 0.322 0.322 0.322

Sensitivity Analysis under MNAR 0.196 0.155 0.078 0.046 −0.018 −0.044

Note: The empirical Monte Carlo standard errors were all around 0.003 for MI and 0.004 for sensitivity analysis

Table 3 Estimates of the linear regression coefficient (β1) under four analysis methods (n = 100, δ = 1); True value = 0.5

Number of imputations (m)

5 10 50 100 500 1000

Full dataset (before deletion) 0.498

Complete Case Analysis 0.339

Multiple Imputation under MAR 0.339 0.340 0.339 0.339 0.339 0.339

Sensitivity Analysis under MNAR 0.440 0.470 0.532 0.557 0.611 0.633

Note: The empirical Monte Carlo standard errors were all around 0.004 for MI and 0.005 for sensitivity analysis
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100 and 1000 and δ are 1 and 0.5. The Figure illustrates
almost the same pattern as Fig. 2; that is, the MNAR es-
timates do not approach the true parameter values as
m→∞.

Explanation of the method failure
In this section, we discuss further details of the weight-
ing approach within the MI framework, which may ex-
plain why the weighting approach fails, as observed in
the previous section.
Consider imputation in the setting described under the

first model in the “Methods” section (i.e. normally distrib-
uted outcome (partially observed) and covariate (fully ob-
served)). Initially, the linear regression model, Y = β0
+ β1X + ε; (ε ∼N(0, σ2)), is fitted to the observed data in

order to obtain the point estimates of β̂ (i.e. β̂0 And β̂1 in
this example) and σ̂ 2 . Then, a new parameter estimate β*

and its associated variance (σ*
2) are drawn from their joint

posterior distribution in two steps:

σ�2∼σ̂ 2 ðno−qÞ
χ2no−q

ð12Þ

β� σ�2∼N β̂ ; σ�2 X′
oXo

� �−1� ���� ð13Þ

where n0 denotes the number of complete cases (i.e. ob-
served data values for Y in this example), q is the num-
ber of parameters in the linear regression model (i.e. two
for this simulation example) and Xo corresponds to the
X values where the Y values are also observed (i.e. the
complete cases) [6].
One reason why the weighting approach may fail is be-

cause the posterior predictive distribution of Y given X,
from which the imputations for this example are drawn, is
a Student-t distribution. This is because the imputation

Fig. 2 Estimates of the marginal mean (left panel) and the regression coefficient (right panel) for a normally distributed outcome obtained from
the sensitivity analysis under MNAR against number of imputations (m) on a log scale

Table 4 Estimates of the marginal proportion of the binary outcome variable under four analysis methods (n = 100, δ = 1); True
value = 0.5

Number of imputations (m)

5 10 50 100 500 1000

Full dataset (before deletion) 0.497

Complete Case Analysis 0.639

Multiple Imputation under MAR 0.608 0.608 0.608 0.608 0.608 0.608

Sensitivity Analysis under MNAR 0.545 0.526 0.493 0.482 0.460 0.452

Note: The empirical Monte Carlo standard errors were all around 0.002 for MI and for sensitivity analysis

Hayati Rezvan et al. BMC Medical Research Methodology  (2015) 15:83 Page 9 of 16



parameter σ*
2 follows a scaled inverse chi-squared distribu-

tion, shown in Equation (12), and the true variance is un-
known. Importantly, the tails of the probability density
function of the t-distribution follow a power function.
Against that, the weights have the form of an exponential
function (refer to Equation (6)); thus, in the tail of the dis-
tribution of the imputed values Σi∈IY Y ij , the weights in-
crease more quickly than the density of the distribution
decreases. It can be shown that, across the imputed data-
sets and given the observed data, the sum of Yi in
Equation (6) (i.e. Σi∈IY Y ij, where i indicates the i

th imputed
value and j represents jth imputed dataset) itself has a t-
distribution with n0-q degrees of freedom, where n0 is the
number of observed values. This links more closely the
shape of the imputation distribution to the shape of the
weight function. Consequently, the second condition of
the importance sampling is violated as the weight, the ra-
tio of the imputation distribution under MNAR to the im-
putation distribution under MAR (g/f described in the

“Importance sampling” section), is unbounded. This re-
sults in an inconsistent MNAR estimate, and may explain
why the weighting approach fails in our example.
Note that the explanation above does not apply to a

binary outcome variable, since the imputation distribu-
tion is no longer a t-distribution. In fact, β* is drawn
from the asymptotic approximation to its posterior dis-
tribution, and the imputed values are only approximate
draws from the posterior predictive distribution of the
missing data. However, in many cases, this asymptotic
approximation may not be an accurate approximation to
the joint posterior distribution, as it might be extremely
wrong out in the tails of the distribution. Thus, again in
the context of an incomplete binary variable it appears
that the importance weights become unbounded and the
MNAR estimate may remain unstable.
It is worth mentioning that the t-distribution is similar

to the normal distribution, but with heavier tails for
small sample sizes. As the sample size increases, the

Table 5 Estimates of the logistic regression coefficient (φ1) under four analysis methods (n = 100, δ = 1); True value = 0.5

Number of imputations (m)

5 10 50 100 500 1000

Full dataset (before deletion) 0.524

Complete Case Analysis 0.329

Multiple Imputation under MAR 0.331 0.332 0.331 0.331 0.332 0.332

Sensitivity Analysis under MNAR 0.546 0.601 0.693 0.727 0.781 0.797

Note: The empirical Monte Carlo standard errors were all around 0.008 for MI for sensitivity analysis

Fig. 3 Estimates of the marginal proportion and the logistic regression coefficient obtained from the sensitivity analysis under MNAR against
number of imputations (m) for a binary outcome
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degrees of freedom (df ) increases and the t-distribution
approaches the normal distribution. For datasets that are
small or the number of missing values is large, the miss-
ing observations are drawn from a t-distribution with
heavy tails. As a result, the MNAR estimate becomes
even more unstable in these scenarios since, across im-
puted datasets, the MAR estimate may become noisier
and improperly weighted. Of note, the problem of un-
bounded weights is not restricted to small sample sizes;
but it becomes more evident when the sample size is
small since the imputed values are drawn from much
heavier tails of the posterior predictive distribution of
missing data. Hence, this issue extends to all datasets ir-
respective of sample size.
In general, it seems that as we increase the number of

imputations, the more likely we are to draw a really ex-
treme imputed dataset which is assigned nearly all the
weight. The problem arises because the weight used for
calculating the overall MNAR estimate is not actually
the ratio of t-densities, and thus, the ratio is definitely
unbounded unless the Yi’s are bounded. In fact, this
problem occurs as a result of a failure in the argument
of Carpenter et al. [18]. In their paper it was shown that
the importance ratio, which was described in the “Im-
portance sampling” section, is

g
f
¼ f ½Y X;R ¼ 0j �

f ½Y X;R ¼ 1j �
¼ f ½R ¼ 0 Y ;Xj �

f ½R ¼ 1 Y ;Xj � �
f X;R ¼ 1½ �
f X;R ¼ 0�½ ð14Þ

where, in a simple scenario, there was only one individ-
ual with a fully observed covariate X, a partially observed
response Y, and a missingness indicator R, which was
zero if Y was missing. It was claimed that under the lo-
gistic model in Equation (3), f[R = 1|Y, X] equates to
expit(α + γX + δY), and thus the importance ratio was

simplified as expf−½αþ γX þ δY �g f ½X;R¼1�
f ½X;R¼0�∝expð−δY Þ .

However, this simplification relies on the assumption
that all the parameters are known. A correct weighting
would compute f[R = r|Y, X], where r = 0,1 by integrating
f[R = r|Y, X, α, γ, δ] over the posterior distribution of α
and γ in the numerator and denominator in Equation
(14).
In the more general case of imputation models that

are GLMs (e.g. logistic regression), where the imputation
models make a normal approximation to the posterior, it
seems that the weighting method will also fail because of
the reason mentioned above. However, this could poten-
tially be avoided for binary variables with missing data
by applying bootstrapping in the imputation process.
The idea is to draw a single bootstrap sample (i.e. ran-
dom sampling with replacement) from the data (multiple
times) and fitting the imputation model to the bootstrap

sample in order to avoid situations where the asymptotic
approximation may be inadequate for the posterior dis-
tribution [44].
It seems that the method failure is likely to occur

more obviously in smaller samples, since they have
smaller degrees of freedom. Also, the bias in the MNAR
estimate will probably increase as the number of imputa-
tions increases in smaller datasets. Furthermore, the lar-
gest weight will increase as the number of imputations
increases and the MNAR estimate will become unstable
(because the chance of observing an imputed dataset
with the minimal sum of the imputed values (for δ > 0),
or with a maximal sum of imputed values (for δ < 0) in-
creases as m increases).

Graphical method for selecting δ
In the simulation studies described earlier, we considered
an unrealistic situation where we assumed that the value
of δ was known. In this section, we describe a real situ-
ation where the value of δ is unknown, and then apply the
graphical method proposed by Héraud-Bousquet et al.
[30] to select a range of plausible values for δ.

Overview of procedure for choosing δ
In the absence of sufficient information about the un-
measured factors in a dataset, it is not typically possible
to estimate the degree of departures from the MAR
mechanism for performing a sensitivity analysis in
practice.
One way to select the magnitude of departures from

MAR is to elicit all possible values that would be consid-
ered reasonable by experts. Héraud-Bousquet et al. [30]
have recently developed a graphical method for obtain-
ing a range of plausible values of δ which represent local
departures from the MAR assumption. This graphical
method was illustrated in four steps using epidemio-
logical data from an observational cohort, in which nor-
malised weights for each imputed dataset were plotted
against different possible values of δ.
According to Héraud-Bousquet et al.’s suggestion for

obtaining a range of δ, the maximum normalised weight
should be around 0.5, and at least five normalised
weights should be above 1

m. These rules are then used to
select a range of values for δ. Under this approach the
sign of δ is identified according to the experts’ opinions
and previous experiences. In the next section, this
graphical method will be applied to the single simulated
dataset described earlier, where data are MNAR (δ = 0.2),
and then will be used in two further real examples with
larger degrees of MNAR (δ = 0.5 and 1). The aim is to
determine a proper range of plausible δ values and to
examine whether the selected range captures the true
value of δ.
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Illustration using a single simulated dataset (continued)
We first start with the single simulated data example de-
scribed earlier and apply the graphical method for
choosing a range for δ, and then we extend our example
to larger magnitudes of δ. Figure 4 shows a histogram of
the sum of imputed Y values in each of 300 imputed
datasets (left panel) and the normalised weights based
on different δ values (right panel), where each curve is
plotted as a function of δ, with a different function for
each of the 300 imputed datasets.
Héraud-Bousquet et al. [30] mentioned that the max-

imum normalised weight across the imputed datasets cor-
responds to the imputed dataset with the minimum sum
of the imputed values when δ is positive (δ > 0), or the
maximum sum of the imputed values when δ is negative
(δ < 0). As can be seen, the datasets no. 299 and 27 have
the minimum and maximum sum of imputations, respect-
ively (refer to the left panel of Fig. 4). Since the true value
of δ is 0.2 in this dataset, the maximum normalised weight
corresponds to the dataset no. 299 since this has the mini-
mum sum of imputed values.
The right panel of Fig. 4 presents the normalised

weights against different δ values. According to Hér-
aud-Bousquet, et al., the maximum normalised weight
should be around 0.5, and more than 5 normalised
weights should be above the line of 1

300. The range of
δ values that fit these criteria is shown by dashed
lines. This range includes values of δ between −0.18

and 0.38 and captures the true value of δ (0.2) used
to simulate the data.
Further investigation was carried out by increasing the

magnitude of δ in the simulated data to 0.5 and 1, with
everything else identical. Figure 5 shows the graphical
procedure for selecting a range for δ and graphical diag-
nostics explained in the section “Graphical diagnostics”,
for the measure of association when n = 500, m = 300
and the true δ is 1.
It is apparent that the range for δ obtained from the

plot above (−0.13, 0.2) does not capture the true value of
δ =1 for this dataset (top right panel). There is a single
imputed dataset which has a high weight, meaning that
this imputed dataset is very influential. Further examin-
ation showed that about 99 % of the weight was concen-
trated on this single imputed dataset, which corresponds
to the outlying weight in the bottom left panel of Fig. 5,
and the large vertical drop at 253 imputed datasets in
the bottom right panel of Fig. 5. See Additional file 4:
Table S1 for estimates of the parameters of interest, with
95 % CI and SE, and Additional file 5: Figure S4, for the
graphical diagnostics for the marginal mean of the Y
variable.
The same results were observed when the moderate

magnitude of departure from MAR was selected (δ =
0.5) (see Additional file 6: Table S2, Additional file 7:
Figure S5 and Additional file 8: Figure S6). Surprisingly,
even when the sample size was increased from 500 to

Fig. 4 Graphical procedure for selecting a range for δ, n = 500, m = 300, δ(True) = 0.2. Left panel: histogram of the sum of imputed Y values for
each data set. Right panel: graphical determination of delta for the variable Y using the approach suggested by Héraud-Bousquet et al. [30]
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1000, with a small value of departure δ = 0.2 one im-
puted dataset was again given a very large weight (see
Additional file 9: Table S3, Additional file 10: Figure S7
and Additional file 11: Figure S8).

Discussion
MI is a common approach for handling missing data.
Standard implementation of MI assumes the data are
MAR, so it is widely recommended to perform a sensi-
tivity analysis to explore the robustness of inferences to
departures from the MAR assumption.
This study evaluated a selection-model-based weighting

approach for performing a sensitivity analysis within the
MI framework. Simulation studies were designed to assess
whether the proposed method can provide unbiased
MNAR estimates across varying numbers of imputations
and sample sizes where the magnitude of departures from
MAR varied from moderate to large. The results indicate
that, in general, the weighting approach produces highly
unstable MNAR estimates across varying numbers of im-
putations. This study also evaluated the graphical method
proposed by Héraud-Bousquet et al. [30] for obtaining a
range of plausible values of the sensitivity parameter δ (i.e.
the magnitude of departure from the MAR assumption)
to examine whether the plausible value is far away from
the true value.
Carpenter et al. [18] introduced the weighting ap-

proach and showed that, in a single simulation study,
this method can gradually remove the bias in the MNAR

estimate as the number of imputations increases. Fur-
ther, Carpenter and Kenward [6] noted that if the dataset
is small or contains a large number of missing values, by
increasing the number of imputations the MNAR esti-
mate obtained from the weighting approach might be
unstable; however, if a suitable imputation model is
chosen the method will perform well in small datasets.
A partial solution has been recently developed when
performing the weighting approach in small datasets
(personal communication: James Carpenter and Melanie
Smuk).
In a different application of the weighting approach

where MI followed by re-weighting was used to assess
the sensitivity of the pooled estimate in a meta-analysis
to selection bias, Carpenter et al. [45] commented on
how the importance ratio will become unbounded as se-
lection bias of studies included in the meta-analysis in-
creases. In their paper they proposed a correction to the
weights formula and illustrated that this performed well
when there was a moderate selection bias and more than
10 observed studies included in the meta-analysis.
The simulation study that was carried out by Carpenter

et al. [18] was the same as our study described in the
“Methods” section (n = 100, δ = 1) where the marginal
mean of a partially observed continuous outcome variable
was the parameter of interest. We extended their simula-
tion study to investigate the additional parameter, the re-
gression coefficient for the outcome on the exposure
variable. In our simulation studies, we identified that

Fig. 5 Graphical procedure for selecting a range for δ (top). Top left panel: histogram of the sum of imputed Y values for each dataset. Top right
panel: graphical determination of delta for the variable Y using the approach suggested by Héraud-Bousquet et al. [30]. Graphical
diagnostics(bottom). Bottom left panel: normalised weights against the MAR estimates obtained from each of the 300 imputed dataset. Bottom

right panel: mean of the MNAR estimate against the number of imputations (n = 500, m = 300, δ(True) = 1, β(True) = 0.5, β̂ ðSimulateÞ =0.501)
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the MNAR estimates were biased and did not con-
verge to the true value of the parameters of interest
for either the marginal mean of the outcome or the
regression coefficient as the number of imputations
increased. A similar pattern was also apparent in the
simulation study by Carpenter et al. [18], where at
1000 imputations the MNAR estimate was negative
(−0.01), and based on our findings, we expect this es-
timate would move further away from zero if more
than 1000 imputations were performed. Of note, there
is a small discrepancy observed between our MNAR
estimates and the original article by Carpenter et al.
[18], over increasing number of imputations (≥50 im-
putations). One explanation for these discrepancies is
stochastic variability in the imputation process that
increases with the number of imputations. That is,
the random draws of the imputation model parame-
ters from their posterior distributions for creating the
imputed values. In particular, increasing the number
of imputations increases the chance of drawing an ex-
treme imputed dataset that is assigned an extreme
weight. Consequently, the MNAR estimate becomes
highly dependent on that single imputed dataset as
the number of imputations increases, and thus the
distribution of the MNAR estimates over 1000 impu-
tations has wider tails than the distribution over
fewer imputations. Our investigation shows that the
distribution of simulated point estimates is heavy-
tailed in such a way that Normal-theory confidence
intervals fail. Therefore, in such cases, Monte Carlo
errors may be a poor guide to simulation error.
Biased estimates were also observed when we in-

creased the sample size to 1000, explored a moderate
departure in the MAR assumption (δ = 0.5), and ex-
tended our evaluation to a binary (partially observed)
outcome variable.
The findings of our investigation highlight that the

weights used in estimating the overall parameter esti-
mate under MNAR become unbounded as the number
of imputations increases. This leads to improper weight-
ing of the imputed datasets so that one or two datasets
take approximately all the weight. It was shown that the
problem of large weights occurs not only for large de-
parture from MAR, but it also may occur for small and
moderate departures even in large datasets. As explained
in the section “Explanation of the method failure”, the
problem arises from the computation of the weights,
and this method should work better if the weights were
correctly computed. However, this issue may not have a
simple solution that is computationally convenient.
The graphical method proposed by Héraud-Bousquet,

et al. [30] for selecting δ relies heavily on the (normal-
ised) weights, which themselves depend on the imputed
values under MAR. This limits the usefulness of this

approach. By definition, we cannot estimate δ from the
data at hand; hence, obtaining a range for δ based on
the available data seems inherently implausible. In fact,
our findings demonstrate that this method does not per-
form adequately as a graphical approach for selecting a
range of δ did not capture the true value of δ used in
our simulation studies. Unfortunately, satisfactory guide-
lines are not currently available in the literature regard-
ing the selection of δ for performing sensitivity analyses
via MI, and further research is required to develop strat-
egies if this is going to be a worthwhile avenue to pur-
sue. The only principled approach to determine
clinically plausible values of δ is to elicit these from ex-
pert knowledge informed as much as possible from ex-
ternal empirical evidence [35, 37]. This approach has
been adopted in other areas of statistics [46, 47].
An alternative approach to assess the impact of de-

parture from the MAR assumption within the MI frame-
work is the pattern-mixture approach [6, 20, 21, 35].
This method is straightforward and easier to compre-
hend for non-statistical collaborators compared with the
weighting approach [29]. Under the pattern-mixture ap-
proach, the degree of departure from MAR is defined as
the difference (shift) in the mean of a partially observed
variable between the unobserved and observed data.
Within the MI framework, this alternative approach is
applicable for both partially observed outcomes and co-
variates, and potentially when more than one variable
has missing data. In the case of a continuous partially
observed variable, missing data are imputed using stand-
ard MI assuming MAR, and then the imputed values in
each imputed datasets are shifted (i.e. add or multiply
δpm, a pattern-mixture model sensitivity parameter, to
each of the imputed values) in such a way that they rep-
resent the MNAR mechanism. When there is a partially
observed binary variable, the shift of δpm needs to be
added to the imputation model; therefore the missing
values are, in fact, drawn from an imputation model as-
suming MNAR rather than MAR. More technical details
of this approach are provided by Carpenter and Kenward
[6], Ratitch et al. [20], Siddique et al. [48, 49], and White
et al. [35].

Conclusions
In summary, in the examples studied, although the
weighting approach outperformed the MAR approach it
still suffered from bias. Importantly, the current study
demonstrates that the weighting approach fails to obtain
unbiased estimates for parameters of interest in a very
simple bivariate model when data are MNAR, even
when using as many as 1000 imputations. The present
findings suggest that this method will produce biased
parameter estimates as long as the weights are obtained
using the formula proposed by Carpenter et al. [18]. This
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potential for bias using the weights proposed by
Carpenter et al. should be recognised by users, and more
appropriate methods should be developed. Hence, add-
itional investigation into MNAR approaches perhaps
with more focus on the pattern-mixture approach as an
alternative method for conducting a sensitivity analysis
following MI is desirable.
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Additional file 11: Figure S8. Graphical diagnostics for a single simulated
dataset (n= 1000, m= 500, δ(True) = 0.2, μ(True) = 0, μðSimulateÞ =− 0.009).
(DOCX 2362 kb)
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