44 research outputs found

    Use of co-grinding as a solvent-free solid state method to synthesize dibenzophenazines

    Get PDF
    International audienceMany synthetic methods exist for dibenzoquinoxalines but only a few for dibenzophenazines and their aza derivatives and even less are `green'. Some dibenzophenazines and dibenzopyridoquinoxaline have been efficiently obtained with good to excellent yield by a very simple method which does not require use of solvent or catalyst. Solid phase synthesis using co-grinding presents thus many advantages in developing greener synthetic organic pathways. (C) 2011 Elsevier Ltd. All rights reserved

    A Metastable Intermediate State of Microtubule Dynamic Instability That Differs Significantly between Plus and Minus Ends

    Get PDF
    The current two-state GTP cap model of microtubule dynamic instability proposes that a terminal crown of GTP-tubulin stabilizes the microtubule lattice and promotes elongation while loss of this GTP-tubulin cap converts the microtubule end to shortening. However, when this model was directly tested by using a UV microbeam to sever axoneme-nucleated microtubules and thereby remove the microtubule's GTP cap, severed plus ends rapidly shortened, but severed minus ends immediately resumed elongation (Walker, R.A., S. Inoué, and E.D. Salmon. 1989. J. Cell Biol. 108: 931–937)

    First-in-human, double-blind, randomized phase 1b study of peptide immunotherapy IMCY-0098 in new-onset type 1 diabetes

    Get PDF
    : Background : Type 1 diabetes (T1D) is a CD4+ T cell-driven autoimmune disease characterized by the destruction of insulin-producing pancreatic β-cells by CD8+ T cells. Achieving glycemic targets in T1D remains challenging in clinical practice; new treatments aim to halt autoimmunity and prolong β-cell survival. IMCY-0098 is a peptide derived from human proinsulin that contains a thiol-disulfide oxidoreductase motif at the N-terminus and was developed to halt disease progression by promoting the specific elimination of pathogenic T cells. Methods: This first-in-human, 24-week, double-blind phase 1b study evaluated the safety of three dosages of IMCY-0098 in adults diagnosed with T1D < 6 months before study start. Forty-one participants were randomized to receive four bi-weekly injections of placebo or increasing doses of IMCY-0098 (dose groups A/B/C received 50/150/450 μg for priming followed by three further administrations of 25/75/225 μg, respectively). Multiple T1D-related clinical parameters were also assessed to monitor disease progression and inform future development. Long-term follow-up to 48 weeks was also conducted in a subset of patients. Results: Treatment with IMCY-0098 was well tolerated with no systemic reactions; a total of 315 adverse events (AEs) were reported in 40 patients (97.6%) and were related to study treatment in 29 patients (68.3%). AEs were generally mild; no AE led to discontinuation of the study or death. No significant decline in C-peptide was noted from baseline to Week 24 for dose A, B, C, or placebo (mean change − 0.108, − 0.041, − 0.040, and − 0.012, respectively), suggesting no disease progression. Conclusions: Promising safety profile and preliminary clinical response data support the design of a phase 2 study of IMCY-0098 in patients with recent-onset T1D. Trial registration: IMCY-T1D-001: ClinicalTrials.gov NCT03272269; EudraCT: 2016–003514-27; and IMCY-T1D-002: ClinicalTrials.gov NCT04190693; EudraCT: 2018–003728-35

    Dibenzophenazines synthesis by a smart green process

    No full text
    International audienc

    Utilisation du co-broyage pour des synthèses organiques sans solvant

    No full text
    National audienc

    Greener pharmacy using solvent-free synthesis

    No full text
    International audienc

    Ten steps to investigate a cellular system with mathematical modeling.

    No full text
    Cellular and intracellular processes are inherently complex due to the large number of components and interactions, which are often nonlinear and occur at different spatiotemporal scales. Because of this complexity, mathematical modeling is increasingly used to simulate such systems and perform experiments in silico, many orders of magnitude faster than real experiments and often at a higher spatiotemporal resolution. In this article, we will focus on the generic modeling process and illustrate it with an example model of membrane lipid turnover
    corecore