111 research outputs found

    On the Role of Viscosity in Early Cosmology

    Full text link
    We present a discussion of the effects induced by bulk viscosity on the very early Universe stability. The viscosity coefficient is assumed to be related to the energy density ρ\rho via a power-law of the form ζ=ζ0ρs\zeta=\zeta_0 \rho^s (where ζ0,s=const.\zeta_0, s=const.) and the behavior of the density contrast in analyzed. In particular, we study both Einstein and hydrodynamic equations up to first and second order in time in the so-called quasi-isotropic collapsing picture near the cosmological singularity. As a result, we get a power-law solution existing only in correspondence to a restricted domain of ζ0\zeta_0. The particular case of pure isotropic FRW dynamics is then analyzed and we show how the asymptotic approach to the initial singularity admits an unstable collapsing picture.Comment: 4 pages, no figur

    Lorentz Gauge Theory and Spinor Interaction

    Full text link
    A gauge theory of the Lorentz group, based on the different behavior of spinors and vectors under local transformations, is formulated in a flat space-time and the role of the torsion field within the generalization to curved space-time is briefly discussed. The spinor interaction with the new gauge field is then analyzed assuming the time gauge and stationary solutions, in the non-relativistic limit, are treated to generalize the Pauli equation.Comment: 4 pages, no figur

    Fermion Dynamics by Internal and Space-Time Symmetries

    Full text link
    This manuscript is devoted to introduce a gauge theory of the Lorentz Group based on the ambiguity emerging in dealing with isometric diffeo-morphism-induced Lorentz transformations. The behaviors under local transformations of fermion fields and spin connections (assumed to be ordinary world vectors) are analyzed in flat space-time and the role of the torsion field, within the generalization to curved space-time, is briefly discussed. The fermion dynamics is then analyzed including the new gauge fields and assuming time-gauge. Stationary solutions of the problem are also analyzed in the non-relativistic limit, to study the spinor structure of an hydrogen-like atom.Comment: 10 pages, no figur

    Contributions to the linear and nonlinear theory of the beam-plasma interaction

    Get PDF
    We focus our attention on some relevant aspects of the beam-plasma instability in order to refine some features of the linear and nonlinear dynamics. After a re-Analysis of the Poisson equation and of the assumption dealing with the background plasma in the form of a linear dielectric, we study the non-perturbative properties of the linear dispersion relation, showing the necessity for a better characterization of the mode growth rate in those flat regions of the distribution function where the Landau formula is no longer predictive. We then upgrade the original-body approach in O'Neil et al. (Phys. Fluids, vol. 14, 1971, pp. 1204-1212), in order to include a return current in the background plasma. This correction term is responsible for smaller saturation levels and growth rates of the Langmuir modes, as result of the energy density transferred to the plasma via the return current. Finally, we include friction effects, as those due to the collective influence of all the plasma charges on the motion of the beam particles. The resulting force induces a progressive resonance detuning, because particles are losing energy and decreasing their velocity. This friction phenomenon gives rise to a deformation of the distribution function, associated with a significant growth of the less energetic particle population. The merit of this work is to show how a fine analysis of the beam-plasma instability outlines a number of subtleties about the linear, intermediate and late dynamics which can be of relevance when such a system is addressed as a paradigm to describe relevant nonlinear wave-particle phenomena (Chen Zonca, Rev. Mod. Phys., vol. 88, 2016, 015008)

    Nonlinear velocity redistribution caused by energetic-particle-driven geodesic acoustic modes, mapped with the beam-plasma system

    Get PDF
    The nonlinear dynamics of energetic particle (EP) driven geodesic acoustic modes (EGAM) in tokamaks is investigated, and compared with the beam-plasma system (BPS). The EGAM is studied with the global gyrokinetic (GK) particle-in-cell code ORB5, treating the thermal ions and EP (in this case, fast ions) as GK and neglecting the kinetic effects of the electrons. The wave-particle nonlinearity only is considered in the EGAM nonlinear dynamics. The BPS is studied with a 1D code where the thermal plasma is treated as a linear dielectric, and the EP (in this case, fast electrons) with an n-body hamiltonian formulation. A one-to-one mapping between the EGAM and the BPS is described. The focus is on understanding and predicting the EP redistribution in phase space. We identify here two distint regimes for the mapping: in the low-drive regime, the BPS mapping with the EGAM is found to be complete, and in the high-drive regime, the EGAM dynamics and the BPS dynamics are found to differ. The transition is described with the presence of a non-negligible frequency chirping, which affects the EGAM but not the BPS, above the identified drive threshold. The difference can be resolved by adding an ad-hoc frequency modification to the BPS model. As a main result, the formula for the prediction of the nonlinear width of the velocity redistribution around the resonance velocity is provided

    Inconsistency in the Standard Model for Thin Accretion Disks

    Full text link
    We analyze the configuration of a thin rotating accretion disk, which is embedded in a magnetic field inducing a backreaction in the gravitating plasma. The aim of this study is to determine the conditions under which the gaseous accretion model of Shakura can be reconciled with the magneto-hydrodynamical picture requested to trigger the underlying turbulent behavior. We focus our attention to the generalized Ohm equation in order to understand if the plasma backreaction is able to provide the proper toroidal current, allowing a non-zero infalling velocity. In the limit of linear plasma backreaction, this analysis shows how the Shakura profile of accretion turns out to be inconsistent. In particular, comparing the azimuthal and the generalized Ohm equilibrium equations, we argue that it is not possible to maintain a constant rate of accretion. A non-stationary scenario for the disk configuration is then outlined and it results into a transient process which is however associated to a vanishing accretion rate.Comment: 7 pages, no figur

    Effects of 1 year of lifestyle intervention on institutionalized older adults

    Get PDF
    The socio-economic and health consequences of our ageing population are well documented, with older adults living in long-term care facilities amongst the frailest possessing specific and significant healthcare and social care needs. These needs may be exacerbated through the sedentary behaviour which is prevalent within care home settings. Reducing sedentary time can reduce the risk of many diseases and improve functional health, implying that improvements in health may be gained by simply helping older adults substitute time spent sitting with time spent standing or in light-intensity ambulation. This study identified the impact of 1 year of lifestyle intervention in a group of older adults living in a long-term care setting in Italy. One hundred and eleven older adults (mean age, 82.37 years; SD = 10.55 years) participated in the study. Sixty-nine older adults were in the intervention group (35 without severe cognitive decline and 34 with dementia) and 42 older adults were in the control group. Data on physical functioning, basic activities of daily living (BADL) and mood were collected 4 times, before, during (every four months) and after the 1 year of intervention. The lifestyle intervention focused on improving the amount of time spent every week in active behaviour and physical activity (minimum 150 min of weekly activities). All participants completed the training program and no adverse events, related to the program, occurred. The intervention group showed steady and significant improvements in physical functioning and a stable situation in BADL and mood following the intervention in older adults with and without dementia, whilst the control group exhibited a significant decline over time. These results suggest that engagement in a physical activity intervention may benefit care home residents with and without dementia both physically and mentally, leading to improved social care and a reduced burden on healthcare services
    corecore