733 research outputs found
Tunneling and the Spectrum of the Potts Model
The three-dimensional, three-state Potts model is studied as a paradigm for
high temperature quantum chromodynamics. In a high statistics numerical
simulation using a Swendson-Wang algorithm, we study cubic lattices of
dimension as large as and measure correlation functions on long lattices
of dimension and . These correlations are
controlled by the spectrum of the transfer matrix. This spectrum is studied in
the vicinity of the phase transition. The analysis classifies the spectral
levels according to an underlying symmetry. Near the phase transition the
spectrum agrees nicely with a simple four-component hamiltonian model. In the
context of this model, we find that low temperature ordered-ordered interfaces
nearly always involve a disordered phase intermediate. We present a new
spectral method for determining the surface tension between phases.Comment: 26 pages plus 13 Postscript figures (Axis versions also provided),
UU-HEP-92/
NEXUS/Physics: An interdisciplinary repurposing of physics for biologists
In response to increasing calls for the reform of the undergraduate science
curriculum for life science majors and pre-medical students (Bio2010,
Scientific Foundations for Future Physicians, Vision & Change), an
interdisciplinary team has created NEXUS/Physics: a repurposing of an
introductory physics curriculum for the life sciences. The curriculum interacts
strongly and supportively with introductory biology and chemistry courses taken
by life sciences students, with the goal of helping students build general,
multi-discipline scientific competencies. In order to do this, our two-semester
NEXUS/Physics course sequence is positioned as a second year course so students
will have had some exposure to basic concepts in biology and chemistry.
NEXUS/Physics stresses interdisciplinary examples and the content differs
markedly from traditional introductory physics to facilitate this. It extends
the discussion of energy to include interatomic potentials and chemical
reactions, the discussion of thermodynamics to include enthalpy and Gibbs free
energy, and includes a serious discussion of random vs. coherent motion
including diffusion. The development of instructional materials is coordinated
with careful education research. Both the new content and the results of the
research are described in a series of papers for which this paper serves as an
overview and context.Comment: 12 page
Physical Orbit for Lambda Virginis and a Test of Stellar Evolution Models
Lambda Virginis (LamVir) is a well-known double-lined spectroscopic Am binary
with the interesting property that both stars are very similar in abundance but
one is sharp-lined and the other is broad-lined. We present combined
interferometric and spectroscopic studies of LamVir. The small scale of the
LamVir orbit (~20 mas) is well resolved by the Infrared Optical Telescope Array
(IOTA), allowing us to determine its elements as well as the physical
properties of the components to high accuracy. The masses of the two stars are
determined to be 1.897 Msun and 1.721 Msun, with 0.7% and 1.5% errors
respectively, and the two stars are found to have the same temperature of 8280
+/- 200 K. The accurately determined properties of LamVir allow comparisons
between observations and current stellar evolution models, and reasonable
matches are found. The best-fit stellar model gives LamVir a subsolar
metallicity of Z=0.0097, and an age of 935 Myr. The orbital and physical
parameters of LamVir also allow us to study its tidal evolution time scales and
status. Although currently atomic diffusion is considered to be the most
plausible cause of the Am phenomenon, the issue is still being actively debated
in the literature. With the present study of the properties and evolutionary
status of LamVir, this system is an ideal candidate for further detailed
abundance analyses that might shed more light on the source of the chemical
anomalies in these A stars.Comment: 43 Pages, 13 figures. Accepted for publication in Ap
Zero temperature string breaking in lattice quantum chromodynamics
The separation of a heavy quark and antiquark pair leads to the formation of
a tube of flux, or "string", which should break in the presence of light
quark-antiquark pairs. This expected zero-temperature phenomenon has proven
elusive in simulations of lattice QCD. We study mixing between the string state
and the two-meson decay channel in QCD with two flavors of dynamical sea
quarks. We confirm that mixing is weak and find that it decreases at level
crossing. While our study does not show direct effects of internal quark loops,
our results, combined with unitarity, give clear confirmation of string
breaking.Comment: 20 pages, 7 figures. With small clarifications and two additions to
references. Submitted to Phys. Rev.
Recommended from our members
What do I do now? Intolerance of uncertainty is associated with discrete patterns of anticipatory physiological responding to different contexts
Heightened physiological responses to uncertainty are a common hallmark of anxiety disorders. Many separate studies have examined the relationship between individual differences in intolerance of uncertainty (IU) and physiological responses to uncertainty during different contexts. Despite this there is a scarcity of research examining the extent to which individual differences in IU are related to shared or discrete patterns of anticipatory physiological responding across different contexts. Anticipatory physiological responses to uncertainty were assessed in three different contexts (associative threat learning and extinction, threat uncertainty, decision-making) within the same sample (n = 45). During these tasks, behavioural responses (i.e. reaction times, choices), skin conductance and corrugator supercilli activity were recorded. In addition, self-reported IU and trait anxiety were measured. IU was related to both skin conductance and corrugator supercilii activity for the associative threat learning and extinction context, and decision-making context. However, trait anxiety was related to corrugator supercilii activity during the threat uncertainty context. Ultimately, this research helps us further tease apart the role of IU on different aspects of anticipation (i.e. valence and arousal) across contexts, which will be relevant for future IU-related models of psychopathology
No Expanding Fireball: Resolving the Recurrent Nova RS Ophiuchi with Infrared Interferometry
Following the recent outburst of the recurrent nova RS Oph on 2006 Feb 12, we
measured its near-infrared size using the IOTA, Keck, and PTI Interferometers
at multiple epochs. The characteristic size of ~3 milliarcseconds hardly
changed over the first 60 days of the outburst, ruling out currently-popular
models whereby the near-infrared emission arises from hot gas in the expanding
shock. The emission was also found to be significantly asymmetric, evidenced by
non-zero closure phases detected by IOTA. The physical interpretation of these
data depend strongly on the adopted distance to RS Oph. Our data can be
interpreted as the first direct detection of the underlying RS Oph binary,
lending support to the recent ``reborn red giant'' models of Hachisu & Kato.
However, this result hinges on an RS Oph distance of ~< 540 pc, in strong
disagreement with the widely-adopted distance of ~1.6 kpc. At the farther
distance, our observations imply instead the existence of a non-expanding,
dense and ionized circumbinary gaseous disk or reservoir responsible for the
bulk of the near-infrared emission. Longer-baseline infrared interferometry is
uniquely suited to distinguish between these models and to ultimately determine
the distance, binary orbit, and component masses for RS Oph, one of the
closest-known (candidate) SNIa progenitor systems.Comment: Accepted by Astrophysical Journal Letter
Molecular Phylogeny and Biogeography of the Native Rodents of Madagascar (Muridae: Nesomyinae): A Test of the Single-Origin Hypothesis
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72349/1/j.1096-0031.1999.tb00267.x.pd
Topological susceptibility with the improved Asqtad action
As a test of the chiral properties of the improved Asqtad (staggered fermion)
action, we have been measuring the topological susceptibility as a function of
quark masses for 2 + 1 dynamical flavors. We report preliminary results, which
show reasonable agreement with leading order chiral perturbation theory for
lattice spacing less than 0.1 fm. The total topological charge, however, shows
strong persistence over Monte Carlo time.Comment: Lattice2002(algor
Modern optical astronomy: technology and impact of interferometry
The present `state of the art' and the path to future progress in high
spatial resolution imaging interferometry is reviewed. The review begins with a
treatment of the fundamentals of stellar optical interferometry, the origin,
properties, optical effects of turbulence in the Earth's atmosphere, the
passive methods that are applied on a single telescope to overcome atmospheric
image degradation such as speckle interferometry, and various other techniques.
These topics include differential speckle interferometry, speckle spectroscopy
and polarimetry, phase diversity, wavefront shearing interferometry,
phase-closure methods, dark speckle imaging, as well as the limitations imposed
by the detectors on the performance of speckle imaging. A brief account is
given of the technological innovation of adaptive-optics (AO) to compensate
such atmospheric effects on the image in real time. A major advancement
involves the transition from single-aperture to the dilute-aperture
interferometry using multiple telescopes. Therefore, the review deals with
recent developments involving ground-based, and space-based optical arrays.
Emphasis is placed on the problems specific to delay-lines, beam recombination,
polarization, dispersion, fringe-tracking, bootstrapping, coherencing and
cophasing, and recovery of the visibility functions. The role of AO in
enhancing visibilities is also discussed. The applications of interferometry,
such as imaging, astrometry, and nulling are described. The mathematical
intricacies of the various `post-detection' image-processing techniques are
examined critically. The review concludes with a discussion of the
astrophysical importance and the perspectives of interferometry.Comment: 65 pages LaTeX file including 23 figures. Reviews of Modern Physics,
2002, to appear in April issu
- …