11 research outputs found

    Characterization of pluripotency of BR-6.

    No full text
    <p>(A) Immunofluorescence using antibodies against (a) OCT4 in red, (b) NANOG in green and (c) SSEA-4 in red. Nuclei were counterstained with (d) DAPI.; (B) Flow cytometry showing cells positive for NANOG, OCT3/4 and SOX2 (red curves). Black curves correspond to cells with control isotypes. Percentage of positive cells are indicated; (C) ScoreCard results: change in expression levels of genes characteristic of self-renewal and of each germ layer in embryoid bodies in relation to hESCs are indicated by color code (from red–upregulation, to blue–downregulation. See “Fold change legend”).</p

    Genomic analysis of BR-6.

    No full text
    <p>(A) G-banding karyotype; (B) Copy number (above) and SNP (below) array profiles of all chromosomes from BR6, showing that neither aneuploidies nor large homozigous segments are present; (C) Detailed data of copy number (above) and SNP (below) array profiles of chromosome 14, showing no copy number alterations and heterozigosity of several SNPs throughout the chromosome, ruling out duplication of that chromosome.</p

    Embryos plated for hESC derivation.

    No full text
    <p>*According to [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0140999#pone.0140999.ref023" target="_blank">23</a>]</p><p>Embryos plated for hESC derivation.</p

    Integrative Variation Analysis Reveals that a Complex Genotype May Specify Phenotype in Siblings with Syndromic Autism Spectrum Disorder

    Get PDF
    <div><p>It has been proposed that copy number variations (CNVs) are associated with increased risk of autism spectrum disorder (ASD) and, in conjunction with other genetic changes, contribute to the heterogeneity of ASD phenotypes. Array comparative genomic hybridization (aCGH) and exome sequencing, together with systems genetics and network analyses, are being used as tools for the study of complex disorders of unknown etiology, especially those characterized by significant genetic and phenotypic heterogeneity. Therefore, to characterize the complex genotype-phenotype relationship, we performed aCGH and sequenced the exomes of two affected siblings with ASD symptoms, dysmorphic features, and intellectual disability, searching for <i>de novo</i> CNVs, as well as for <i>de novo</i> and rare inherited point variations—single nucleotide variants (SNVs) or small insertions and deletions (indels)—with probable functional impacts. With aCGH, we identified, in both siblings, a duplication in the 4p16.3 region and a deletion at 8p23.3, inherited by a paternal balanced translocation, t(4, 8) (p16; p23). Exome variant analysis found a total of 316 variants, of which 102 were shared by both siblings, 128 were in the male sibling exome data, and 86 were in the female exome data. Our integrative network analysis showed that the siblings’ shared translocation could explain their similar syndromic phenotype, including overgrowth, macrocephaly, and intellectual disability. However, exome data aggregate genes to those already connected from their translocation, which are important to the robustness of the network and contribute to the understanding of the broader spectrum of psychiatric symptoms. This study shows the importance of using an integrative approach to explore genotype-phenotype variability.</p></div

    FISH images.

    No full text
    <p>(A) image showing that, in the female sibling, there were three chr4p copies, marked in green with a GS-118B13 probe (green arrow), and one chr8p copy, marked in red with a RP11-338B22 probe (red arrow); (B) image showing that, in the male sibling, there were also three chr4p copies, marked in red with a GS-118B13 probe (red arrow), and one chr8p copy, marked in green with a GS-77L23 probe (green arrow); (C) image showing that, in the father, there was a balanced translocation, t(4;8); and (D) image showing that, in the mother, the chromosomes were normal.</p
    corecore