72 research outputs found

    Neonatal iron distribution and infection susceptibility in full term, preterm and low birthweight babies in urban Gambia: study protocol for an observational study.

    Get PDF
    Background: Neonatal infection is the third largest cause of death in children under five worldwide.  Nutritional immunity is the process by which the host innate immune system limits nutrient availability to invading organisms. Iron is an essential micronutrient for both microbial pathogens and their mammalian hosts. Changes in iron availability and distribution have significant effects on pathogen virulence and on the immune response to infection. Our previously published data shows that, during the first 24 hours of life, full-term neonates have reduced overall serum iron. Transferrin saturation decreases rapidly from 45% in cord blood to ~20% by six hours post-delivery. Methods: To study neonatal nutritional immunity and its role in neonatal susceptibility to infection, we will conduct an observational study on 300 full-term normal birth weight (FTB+NBW), 50 preterm normal birth weight (PTB+NBW), 50 preterm low birth weight (PTB+LBW) and 50 full-term low birth weight (FTB+LBW), vaginally-delivered neonates born at Kanifing General Hospital, The Gambia. We will characterize and quantify iron-related nutritional immunity during the early neonatal period and use ex vivo sentinel bacterial growth assays to assess how differences in serum iron affect bacterial growth. Blood samples will be collected from the umbilical cord (arterial and venous) and at serial time points from the neonates over the first week of life. Discussion: Currently, little is known about nutritional immunity in neonates. In this study, we will increase understanding of how nutritional immunity may protect neonates from infection during the first critical days of life by limiting the pathogenicity and virulence of neonatal sepsis causing organisms by reducing the availability of iron. Additionally, we will investigate the hypothesis that this protective mechanism may not be activated in preterm and low birth weight neonates, potentially putting these babies at an enhanced risk of neonatal infection. Trial registration: clinicaltrials.gov ( NCT03353051) 27/11/2017

    A double blind randomised controlled trial comparing standard dose of iron supplementation for pregnant women with two screen-and-treat approaches using hepcidin as a biomarker for ready and safe to receive iron.

    Get PDF
    BACKGROUND: Until recently, WHO recommended daily iron supplementation for all pregnant women (60 mg/d iron combined with 400ug/d folic acid) where anaemia rates exceeded 40 %. Recent studies indicate that this may pose a risk to pregnant women. Therefore, there is a need to explore screen-and-treat options to minimise iron exposure during pregnancy using an overall lower dosage of iron that would achieve equivalent results as being currently recommended by the WHO. However, there is a lack of agreement on how to best assess iron deficiency when infections are prevalent. Here, we test the use of hepcidin a peptide hormone and key regulator of iron metabolism, as a potential index for 'safe and ready to receive' iron. DESIGN/METHODS: This is a 3-arm randomised-controlled proof-of-concept trial. We will test the hypothesis that a screen-and-treat approach to iron supplementation using a pre-determined hepcidin cut-off value of <2.5 ng/ml will achieve similar efficacy in preventing iron deficiency and anaemia at a lower iron dose and hence will improve safety. A sample of 462 pregnant women in rural Gambia will be randomly assigned to receive: a) UNU/UNICEF/WHO international multiple micronutrient preparation (UNIMMAP) containing 60 mg/d iron (reference arm); b) UNIMMAP containing 60 mg/d iron but based on a weekly hepcidin screening indicating if iron can be given for the next 7 days or not; c) or UNIMMAP containing 30 mg/d iron as in (b) for 12 weeks in rural Gambia. The study will test if the screen-and-treat approach is non-inferior to the reference arm using the primary endpoint of haemoglobin levels at a non-inferiority margin of 0.5 g/dl. Secondary outcomes of adverse effects, compliance and the impact of iron supplementation on susceptibility to infections will also be assessed. DISCUSSION: This trial is expected to contribute towards minimising the exposure of pregnant women to iron that may not be needed and therefore potentially harmful. If the evidence in this study shows that the overall lower dosage of iron is non-inferior to 60 mg/day iron, this may help decrease side-effects, improve compliance and increase safety. The potential for the use of hepcidin for a simple point-of-care (PoC) diagnostic for when it is most safe and effective to give iron may improve maternal health outcomes. TRIAL REGISTRATION: ISRCTN21955180

    Dietary strategies for improving iron status: balancing safety and efficacy.

    Get PDF
    In light of evidence that high-dose iron supplements lead to a range of adverse events in low-income settings, the safety and efficacy of lower doses of iron provided through biological or industrial fortification of foodstuffs is reviewed. First, strategies for point-of-manufacture chemical fortification are compared with biofortification achieved through plant breeding. Recent insights into the mechanisms of human iron absorption and regulation, the mechanisms by which iron can promote malaria and bacterial infections, and the role of iron in modifying the gut microbiota are summarized. There is strong evidence that supplemental iron given in nonphysiological amounts can increase the risk of bacterial and protozoal infections (especially malaria), but the use of lower quantities of iron provided within a food matrix, ie, fortified food, should be safer in most cases and represents a more logical strategy for a sustained reduction of the risk of deficiency by providing the best balance of risk and benefits. Further research into iron compounds that would minimize the availability of unabsorbed iron to the gut microbiota is warranted

    Efficacy and safety of hepcidin-based screen-and-treat approaches using two different doses versus a standard universal approach of iron supplementation in young children in rural Gambia: a double-blind randomised controlled trial.

    Get PDF
    BACKGROUND: Iron deficiency prevalence rates frequently exceed 50 % in young children in low-income countries. The World Health Organization (WHO) recommended universal supplementation of young children where anaemia rates are >40 %. However, large randomized trials have revealed that provision of iron to young children caused serious adverse effects because iron powerfully promotes microbial growth. Hepcidin - the master regulator of iron metabolism that integrates signals of infection and iron deficiency - offers the possibility of new solutions to diagnose and combat global iron deficiency. We aim to evaluate a hepcidin-screening-based iron supplementation intervention using hepcidin cut-offs designed to indicate that an individual requires iron, is safe to receive it and will absorb it. METHODS: The study is a proof-of-concept, three-arm, double blind, randomised controlled, prospective, parallel-group non-inferiority trial. Children will be randomised to receive, for a duration of 12 weeks, one of three multiple micronutrient powders (MNP) containing: A) 12 mg iron daily; B) 12 mg or 0 mg iron daily based on a weekly hepcidin screening indicating if iron can be given for the next seven days or not; C) 6 mg or 0 mg iron daily based on a weekly hepcidin screening indicating if iron can be given for the next seven days or not. The inclusion criteria are age 6-23 months, haemoglobin (Hb) concentration between 7 and 11 g/dL, z-scores for Height-for-Age, Weight-for-Age and Weight-for-Height > -3 SD and free of malaria. Hb concentration at 12 weeks will be used to test whether the screen-and-treat approaches are non-inferior to universal supplementation. Safety will be assessed using caregiver reports of infections, in vitro bacterial and P. falciparum growth assays and by determining the changes in the gut microbiota during the study period. DISCUSSION: A screen-and-treat approach using hepcidin has the potential to make iron administration safer in areas with widespread infections. If this proof-of-concept study shows promising results the development of a point-of-care diagnostic test will be the next step. TRIAL REGISTRATION: ISRCTN07210906 , 07/16/2014

    Oral iron acutely elevates bacterial growth in human serum.

    Get PDF
    Iron deficiency is the most common nutrient deficiency worldwide and routine supplementation is standard policy for pregnant mothers and children in most low-income countries. However, iron lies at the center of host-pathogen competition for nutritional resources and recent trials of iron administration in African and Asian children have resulted in significant excesses of serious adverse events including hospitalizations and deaths. Increased rates of malaria, respiratory infections, severe diarrhea and febrile illnesses of unknown origin have all been reported, but the mechanisms are unclear. We here investigated the ex vivo growth characteristics of exemplar sentinel bacteria in adult sera collected before and 4 h after oral supplementation with 2 mg/kg iron as ferrous sulfate. Escherichia coli, Yersinia enterocolitica and Salmonella enterica serovar Typhimurium (all gram-negative bacteria) and Staphylococcus epidermidis (gram-positive) showed markedly elevated growth in serum collected after iron supplementation. Growth rates were very strongly correlated with transferrin saturation (p < 0.0001 in all cases). Growth of Staphylococcus aureus, which preferentially scavenges heme iron, was unaffected. These data suggest that even modest oral supplements with highly soluble (non-physiological) iron, as typically used in low-income settings, could promote bacteremia by accelerating early phase bacterial growth prior to the induction of immune defenses

    A recall-by-genotype study on polymorphisms in the TMPRSS6 gene and oral iron absorption: a study protocol

    Get PDF
    Background: Oral iron supplementation is commonly used to treat and prevent anaemia. The transmembrane protease serine 6 gene (TMPRSS6), which encodes matriptase 2, is a negative regulator of hepcidin, the key controller of iron homeostasis. Genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) in the TMPRSS6 gene that are associated with an increased risk of iron-deficiency anaemia.  We will investigate the in vivo effects of three previously reported TMPRSS6 variants (rs855791, rs4820268 and rs2235321) on oral iron absorption in non-anaemic volunteers in The Gambia. Methods: A recall-by-genotype study design will be employed. Pre-genotyped participants will be recruited from the West African BioResouce (WABR), which currently contains over 3000 genotyped individuals. Male and female volunteers will be selected based on polymorphisms (rs855791, rs4820268 and rs2235321) in the TMPRSS6 gene in the Gambian population. The effects of a single variant allele at one SNP and the additive effect of two or three variant alleles from either two or all three SNPs will be investigated. Study participants will be given a single oral dose of 400mg ferrous sulfate, and blood samples will be collected at baseline, two hours and five hours post supplementation. Differences in iron absorption between genotype groups will be assessed by measuring the increase in serum iron concentration at five hours post iron ingestion. Discussion: This study will increase understanding of the role of genetic variations in TMPRSS6 on oral iron absorption in subjects of West African origin. This will test for the biological basis for the association of each of the three TMPRSS6 variants with iron absorption. This may help in guiding future iron intervention strategies, particularly in populations with a high frequency of these SNPs and a high frequency of anaemia. Study registration: ClinicalTrials.gov NCT03341338 14/11/17.</ns3:p

    Early postnatal hypoferremia in low birthweight and preterm babies: A prospective cohort study in hospital-delivered Gambian neonates.

    Get PDF
    BACKGROUND: Neonates, particularly those born preterm (PTB) and with low birthweight (LBW), are especially susceptible to bacterial and fungal infections that cause an estimated 225,000 deaths annually. Iron is a vital nutrient for the most common organisms causing septicaemia. Full-term babies elicit an immediate postnatal hypoferremia assumed to have evolved as an innate defence. We tested whether PTB and LBW babies are capable of the same response. METHODS: We conducted an observational study of 152 babies who were either PTB (born ≥32 to <37 weeks gestational age) and/or LBW (<2500 g) (PTB/LBW) and 278 term, normal-weight babies (FTB/NBW). Blood was sampled from the umbilical cord vein and artery, and matched venous blood samples were taken from all neonates between 6-24 h after delivery. We measured haematological, iron and inflammatory markers. FINDINGS: In both PTB/LBW and FTB/NBW babies, serum iron decreased 3-fold within 12 h of delivery compared to umbilical blood (7·5 ± 4·5 vs 23·3 ± 7·1 ng/ml, P < 0·001, n = 425). Transferrin saturation showed a similar decline with a consequent increase in unsaturated iron-binding capacity. C-reactive protein levels increased over 10-fold (P < 0·001) and hepcidin levels doubled (P < 0·001). There was no difference in any of these responses between PTB/LBW and FTB/NBW babies. INTERPRETATION: Premature or low birthweight babies are able to mount a very rapid hypoferremia that is indistinguishable from that in normal term babies. The data suggest that this is a hepcidin-mediated response triggered by acute inflammation at birth, and likely to have evolved as an innate immune response against bacterial and fungal septicaemia. TRIAL REGISTRATION: clinicaltrials.gov (NCT03353051). Registration date: November 27, 2017. FUNDING: Bill & Melinda Gates Foundation (OPP1152353)

    A recall-by-genotype study on polymorphisms in the TMPRSS6 gene and oral iron absorption: a study protocol

    Get PDF
    Background: Oral iron supplementation is commonly used to treat and prevent anaemia. The transmembrane protease serine 6 gene (TMPRSS6), which encodes matriptase 2, is a negative regulator of hepcidin, the key controller of iron homeostasis. Genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) in the TMPRSS6 gene that are associated with an increased risk of iron-deficiency anaemia.  We will investigate the in vivo effects of three previously reported TMPRSS6 variants (rs855791, rs4820268 and rs2235321) on oral iron absorption in non-anaemic volunteers in The Gambia. Methods: A recall-by-genotype study design will be employed. Pre-genotyped participants will be recruited from the West African BioResouce (WABR), which currently contains over 3000 genotyped individuals. Male and female volunteers will be selected based on polymorphisms (rs855791, rs4820268 and rs2235321) in the TMPRSS6 gene in the Gambian population. The effects of a single variant allele at one SNP and the additive effect of two or three variant alleles from either two or all three SNPs will be investigated. Study participants will be given a single oral dose of 400mg ferrous sulfate, and blood samples will be collected at baseline, two hours and five hours post supplementation. Differences in iron absorption between genotype groups will be assessed by measuring the increase in serum iron concentration at five hours post iron ingestion. Discussion: This study will increase understanding of the role of genetic variations in TMPRSS6 on oral iron absorption in subjects of West African origin. This will test for the biological basis for the association of each of the three TMPRSS6 variants with iron absorption. This may help in guiding future iron intervention strategies, particularly in populations with a high frequency of these SNPs and a high frequency of anaemia. Study registration: ClinicalTrials.gov NCT03341338 14/11/17.</ns4:p

    Antenatal iron supplementation and birth weight in conditions of high exposure to infectious diseases.

    Get PDF
    BACKGROUND: A recent cohort study among Papua New Guinean women surprisingly showed iron deficiency during pregnancy to be associated with increased birth weight. These findings seemingly contradict previous trial evidence that iron supplementation leads to increased birth weight, particularly in iron-deficient women, and hence require explanation. MAIN TEXT: We have re-analysed data from a previous trial in Kenya and demonstrated that, because women who were initially iron deficient respond better to iron supplementation, they show an increase in birthweight. There is evidence that this benefit is decreased in iron-replete women, possibly due to the adverse effects of haemoconcentration that can impair oxygen and nutrient transfer across the placenta. The Papua New Guinean results might be explained by a similar differential response to the iron supplements that they all received. CONCLUSIONS: Antenatal iron supplementation should ideally be administered in conjunction with measures to prevent, diagnose and treat malaria given the propensity of pathogenic microorganisms to proliferate in iron-supplemented individuals. However, even where services to prevent and treat malaria are poor, current evidence supports the conclusion that the benefits of universal iron supplementation outweigh its risks. Please see related article: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-018-1146-z. Please see related article: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-019-1376-8
    • …
    corecore