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Dietary strategies for improving iron status: balancing safety
and efficacy

Andrew M. Prentice, Yery A. Mendoza, Dora Pereira, Carla Cerami, Rita Wegmuller,
Anne Constable, and Jörg Spieldenner

In light of evidence that high-dose iron supplements lead to a range of adverse
events in low-income settings, the safety and efficacy of lower doses of iron pro-
vided through biological or industrial fortification of foodstuffs is reviewed. First,
strategies for point-of-manufacture chemical fortification are compared with biofor-
tification achieved through plant breeding. Recent insights into the mechanisms of
human iron absorption and regulation, the mechanisms by which iron can promote
malaria and bacterial infections, and the role of iron in modifying the gut micro-
biota are summarized. There is strong evidence that supplemental iron given in
nonphysiological amounts can increase the risk of bacterial and protozoal infec-
tions (especially malaria), but the use of lower quantities of iron provided within a
food matrix, ie, fortified food, should be safer in most cases and represents a more
logical strategy for a sustained reduction of the risk of deficiency by providing the
best balance of risk and benefits. Further research into iron compounds that would
minimize the availability of unabsorbed iron to the gut microbiota is warranted.

INTRODUCTION

Iron deficiency is estimated to be the most prevalent

micronutrient deficiency worldwide and contributes to
multiple pathologies mediated both through iron-

deficiency anemia1–3 and through direct effects on the
formation and function of organs, especially the brain.4–6

The reduction of iron-deficiency anemia is one of the six
priorities of the World Health Organization’s (WHO’s)

Comprehensive Implementation Plan on Maternal, Infant,
and Young Child Nutrition.7 These priorities have been

adopted as Priority Nutrition Indicators for the United
Nation’s post-2015 Sustainable Development Goals.8,9

The highest prevalence rates of iron deficiency and
iron-deficiency anemia occur in low-income countries

where the combination of poor diet and high levels of
infection chronically limits the uptake of iron. Because

such populations can rarely afford iron-rich diets, espe-
cially those that contain the more bioavailable heme

iron, the WHO recommends that governments of coun-
tries with a high prevalence of anemia implement pro-

grams of universal iron supplementation for young
children and pregnant women.10,11

There are two problems with this approach: low
levels of implementation, and the possibility that sup-

plements may induce harmful side effects. In 2006, a
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significant excess of serious adverse events in African

children receiving iron during a very large intervention

trial12 raised serious concerns about the safety of iron

supplements. These concerns have been reinforced by

subsequent studies13–15 and are made plausible by the

known stimulatory effect of iron on potentially patho-

genic bacteria and protozoa.16 An expert committee

convened by the WHO17 posited that it may be the

nonphysiological nature of highly absorbable iron sup-

plements, which bypass nature’s evolved systems for

safely chaperoning iron and result in an excess of

nontransferrin-bound iron, that underlies the harmful

effects. The committee concluded that, although not yet

proven, it was likely that iron delivered through the nat-

ural matrix of foods would be a safer alternative.
There are several methods currently in use for aug-

menting the level of dietary iron. Supplements (admin-

istered in the form of capsules or drops) are often used

for the treatment of severe iron deficiency in a targeted

population. Point-of-use fortification employs micronu-

trient powders in the form of packed, single-dose sa-

chets that can be added to prepared food to improve its

nutrient value. Biofortification involves the targeted

breeding of staple food crops in order to increase their

intrinsic content of micronutrients, including iron.

Food fortification is the addition of micronutrients at

the point of manufacture to enhance the nutritional

content of the food items, such as meal ingredients or

condiments. Unlike supplementation, iron fortification

at the point of manufacture enables the delivery of small

doses of the micronutrient in a food vehicle alongside

the possibility of several servings per day. It is slower to

raise body iron levels compared with iron supplementa-

tion or iron therapy, but it might be safer. The purpose

of this review is to critically assess the latest evidence on

the effects of dietary iron and the safety of augmenting

iron levels using current strategies across all popula-

tions, including those from environments or settings

with high levels of infection.

IRON FORTIFICATION OF FOOD

Numerous studies have evaluated the effect of iron for-

tification in terms of health18–20 and economic bene-

fits.21 Although many of the existing studies are based

on food fortification in general, some have focused on

specific packaged foods, such as beverages,22 milk, cer-

eals,18 and condiments.23,24

Fortification of food products with iron implies the

addition of iron-containing substances to the product

recipe, either as isolated compounds (eg, iron salts or

chelates) or as iron-rich ingredients (eg, meat or its de-

rivatives). The choice of these ingredients is influenced

by the desired product characteristics, including taste

and color, and may be constrained by cost.
Although iron has been added to diverse food items

since the early 1940s,25 its addition to packaged food
products still poses technical challenges. Because of its

oxidation-reduction properties, iron can create chem-
ical instability in the food matrix, inducing organoleptic
changes that are often unacceptable to the consumer.26

To overcome this technical obstacle, the industry uses
insoluble, poorly soluble, or strongly chelated27 iron

compounds, all of which have limited chemical reactiv-
ity. However, both solubility and chemical availability

are necessary for effective absorption (bioavailability) of
inorganic or nonheme iron. The preferred iron carriers

must therefore offer a balance of these properties. These
carriers must be tailored to the specific food product.

For example, more soluble carriers can be used in dark-
colored items (such as soy and fish sauces), which are

less affected by color changes but are still prone to alter-
ations in taste. Iron may react with other components

of food products (such as unsaturated fatty acids, poly-
phenols, vitamins, etc), thereby affecting the shelf life

and/or the nutritive value.
Beyond these technical issues, a key consideration

is the bioavailability of the added iron. While heme iron
is well absorbed in the human digestive tract, nonheme

iron is generally poorly absorbed.28 Besides the differ-
ences in the mechanism of absorption of these two

types of iron by the enterocytes – discussed elsewhere
in this article – the absorption of nonheme iron is sub-

ject to strong interference from other common food
components such as phytates from cereals29 and other

staple foods (sorghum, pulses) or polyphenolic struc-
tures from fruits and vegetables. In fact, polyphenols

can even inhibit the absorption of heme iron.30

The main iron compounds used for fortification of

packaged foods are listed in Table 1, together with a
qualitative assessment of their solubility and bioavail-

ability (based on several references26,27,31–34).
Since heme iron is readily bioavailable, there have

been some instances of the use of meat-derived prod-

ucts in packaged food as fortificants.35,36 Although this
could be a good approach for some populations that

usually cannot afford sufficient quantities of meat in
their diets, it may not be possible to extend it to more

common food items because of issues related to con-
sumer acceptance and/or price and availability.

Another natural source of iron is ferritin, a protein
that can encapsulate high amounts of iron and is used

by plants and animals for iron storage. It has been noted
repeatedly that phytoferritin has high potential as a

food fortificant.37,38 Currently, however, phytoferritin is
not available commercially; therefore, it can be used

only in products that contain sufficient amounts of
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foods that are naturally rich in this protein, such as pulses

(beans, lentils, etc). Compounds that mimic the behavior

of ferritin have recently shown very good bioavailability

and are being explored for use in supplements,39 but they

might be difficult to incorporate into some foods.
Manufacturers of fortified foods usually inform con-

sumers of their products’ nutritional quality through

label claims. In order to guarantee significant benefits for

the consumer, regulatory bodies and health authorities

define the minimum amounts of micronutrients that

must be achieved before nutritional and/or health claims

can be made. The WHO and Food and Agriculture

Organization of the United Nations (FAO) Codex

Alimentarius40 specifies that, in order to carry the nutri-

tional claim of “fortified with iron,” products must con-

tain at least 15% of the relevant Nutrient Reference

Value (NRV) per measure of product. The claim “source

of iron” requires that a product contain a minimum of

15% of the iron NRV (14 mg/d), ie, 2.1 mg per measure.

The claim “rich in iron” requires that a product contain

30% of the NRV, ie, 4.2 mg per measure.
The Codex Alimentarius41 gives several options for

determining the measure (Table 2). In general, these

measures should be roughly equivalent. However, in the

case of products that are consumed in small quantities

but are nevertheless good carriers of fortification, such

as condiments and bouillon cubes, the measures

“100 g,” or “100 mL” or “100 kcal” are not realistic, since

such quantities are not consumed in practice. Some

companies estimate that the measure “per serving” is

more appropriate to convey good nutrition,42 provided

the serving is determined realistically and corresponds

with the amounts typically consumed.

BIOFORTIFICATION

Biofortification aims to provide staple food crops that

are rich in micronutrients. By combining traditional

Table 1 Main iron compounds used for the fortification of packaged foods
Compound Iron load

(% weight)
Solubility in

watera
Relative

bioavailability (%)b
Induction of

taste, texture, or
color changes

Approximate
cost scalec

Ferrous sulfate 7H20 20 High 100 High Low
Dried ferrous sulfate 33 High 100 High Low
Ferrous gluconate 12 High 89 High High
Ferrous lactate 19 High 106 High High
Ferric ammonium

citrate
18 High >100 High Medium

Ferrous ammonium
sulfate

14 High �100 High Medium

Ferrous bisglycinate 20 High >100 Low High
Ferrous or ferric EDTA

chelates
13 High �100 d Low High

Ferrous fumarate 33 Low 100 Low Low
Ferrous succinate 35 Low 92 Low High
Ferric saccharate 10 Low 74 Low High
Ferric glycerophosphate 15 Low �90 Low Very high
Ferrous citrate 24 Low 74 Low Medium
Ferrous tartrate 22 Low 62 Low Medium
Ferric pyrophosphate 25 Low 21–74 Low Low to medium
Ferric orthophosphate 28 Low 25–32 Low Medium
Electrolytic iron powder 97 Negligible 75 Variablee Very low
H-reduced iron 97 Negligible 13–148 Variablee Very low
CO-reduced iron 97 Negligible 10–30 Variablee Very low
Atomized iron 97 Negligible ND Variablee Very low
Carbonyl iron 99 Negligible 5–20 Variablee Very low
Abbreviation: CO, carbon monoxide; H, hydrogen; ND, not determined.
aSolubility can be enhanced in acid media.
bCompared with that of ferrous sulfate.
cPrices vary, depending on supplier.
dEDTA enhances the absorption of iron from other dietary components, especially in the presence of phytates or similar antinutrients.
eDry products like cereals are less sensitive. Products with high water activity or acidity, like yogurt, are highly sensitive.

Table 2 Excerpt from the Codex Alimentarius
Guidelines for Use of Nutrition and Health Claims
(CAC/GL 23-1997)41

Component Claim Condition (not less than)

Vitamins and
minerals

Source 15% of NRV per 100 g (solids)
7.5% of NRV per 100 mL (liquids)
or 5% of NRV per 100 kcal

(12% of NRV per 1 MJ)
or 15% of NRV per serving

High 2 times the values for “source”
Abbreviation: NRV, nutrient reference value.
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breeding with modern techniques, biofortification

blends the traits of high-yield crop varieties with high-

iron varieties.43 In principle, the use of biofortified

crops could address micronutrient deficiencies by en-

riching the staple food items that constitute the main

portion of the diet in poor countries. Therefore, even

very small amounts of micronutrients could have a

positive impact over time. A second part of the reason-

ing is that, if biofortified crops also possess excellent

agronomic characteristics, a self-sustaining public

health intervention will result because farmers will favor

such crops.

Iron biofortification is applicable to cereals like

wheat, rice, and millet and to pulses like beans, peas,

and lentils. The concentration of iron in regular crop

varieties is relatively small: around 50 parts per million

(ppm) in pulses,44,45 25 ppm in wheat,46 and less than

15 ppm in rice.47 However, some wild or less common

varieties contain amounts that are double or triple the

average amounts. In grains such as wheat, iron is con-

centrated mainly in the outer layer (aleurone), which is

usually separated in the bran and discarded in the pro-

cess of making flour for bread, noodles, etc. Iron in the

aleurone is most likely trapped in very tightly bound

phytic acid structures.48 Logically, the high affinity of

phytic acid to bind iron should hinder the use of iron

by bacteria inhabiting the intestine. However, it is pos-

sible that phytases derived from various sources (plants

or other dietary components), synthesized by the gut

bacteria themselves, or produced by the intestinal mu-

cosal cells can degrade phytates in the gastrointestinal

tract and thereby free the chelated iron to some

extent.49

The combination of low concentrations of iron in

grains, interference from phytic acid, and separation of

the bran during processing means that large amounts of

wheat flour–based foods would have to be ingested in

order for individuals to absorb sufficient quantities of

iron.50 Iron-biofortified millet, which is grown in India

and some other countries, contains higher concentra-

tions of iron. Iron levels in this type of millet reach

90 ppm, whereas levels in nonbiofortified millet are

around 20 ppm. Several studies indicate that regular in-

take of biofortified millet can be efficacious against iron

deficiency.51,52

Biofortified pulses, containing 100 ppm or more,

have the highest concentrations of iron.53 Although

phytic acid is present in beans, a high proportion of the

iron is contained in phytoferritin. Iron from ferritins

has been shown to be highly bioavailable.54 Several

studies have examined the bioavailability or efficacy of

iron in biofortified beans consumed in developing

countries.55 Generally, these studies have focused on

the increase in iron absorption and the efficacy of bio-

fortification, without giving consideration to possible

negative outcomes or the undesired effects of iron on

the microbiome (see sections below).
The current target levels for iron biofortification

are in fact quite modest,56 far lower than those for iron

supplementation. These targets have been established

with staple crops (ie, foods consumed in large amounts,

very frequently) and populations (rather than individ-

uals) in mind. Higher levels may be reachable through

genetic engineering, but genetically modified organisms

remain stigmatized in many countries.57,58

MECHANISMS OF IRON ABSORPTION:
THE ROLE OF HEPCIDIN

Iron in foods can be broadly divided into heme and

nonheme iron, of which the former is much more read-

ily absorbed. The precise mechanism(s) by which heme

iron is absorbed remains a matter of debate.59 In con-

trast, research over the past 2 decades has clarified the

key elements of the molecular mechanisms by which

nonheme iron is absorbed and by which all iron is dis-

tributed to tissues. Of central importance has been the

discovery of hepcidin, the master regulator of iron

homeostasis, and the elucidation of its mode of action

in maintaining healthy body iron status.60 These basic

science discoveries are of profound importance to the

rational design of next-generation strategies for com-

bating global iron deficiency and can inform predic-

tions about the likely safety and efficacy of iron

fortification programs.
Many detailed summaries of iron absorption and

regulation are available elsewhere.61 In brief, soluble

nonheme iron from the diet is reduced from Fe3þ to

Fe2þ by a brush border ferric reductase, duodenal cyto-

chrome B. The enterocyte then internalizes Fe2þ via the

divalent metal transporter 1 (DMT1). It has been pro-

posed that forms of nanoparticulate nonheme iron,

such as the ferritin iron core, can be taken up whole by

the enterocyte through endocytosis and are then dis-

solved only in vesicles inside the cell.39,62–64

Intracellular iron, derived from both pathways

above, can then be stored (only temporarily, however,

as the cells have a rapid rate of turnover) or transported

across the basolateral membrane into the circulation.

This process is facilitated by a single transmembrane

transporter, ferroportin. The Fe2þ is then oxidized by

the ferroxidases hephaestin and ceruloplasmin before it

is taken up by the chaperone transporter transferrin for

distribution to other organs and tissues.

Hepcidin regulates iron absorption by binding to

ferroportin. When hepcidin binds to the extracellular
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arm of ferroportin, ferroportin is internalized and

degraded, thus preventing iron egress. The iron blocked
within the enterocytes initiates an intracellular regula-

tion mechanism that further reduces the entrance of
iron into the cell through divalent metal transporter 1;

this blocked iron is ultimately excreted in the stool
when the enterocytes die.

This new knowledge forces a radical reinterpret-

ation of nutritionists’ concepts of iron absorption in
several key respects. First, it has long been known that

humans have no physiological means of regulating iron
status through active excretion of iron, except for the

loss of enterocytic iron that was never been fully ab-
sorbed. Iron is lost through menstruation or intentional

or unintentional blood loss (trauma, childbirth, or
therapeutic phlebotomy for iron overload), but these

processes are unregulated. Therefore, the regulation of
iron absorption is critical to the maintenance of healthy

iron homeostasis. Furthermore, unlike regulatory proc-
esses in other metals such as zinc, whose efflux is regu-

lated by multiple mechanisms, iron efflux from cells is
regulated by a single mechanism, ie, ferroportin, which

consequently allows precise control. Likewise, iron is
the only trace element for which a hormone regulator,

ie, hepcidin, has been discovered. As evidenced by these
characteristics, iron absorption is a highly regulated

process.
The earlier view held by nutritionists (and, hence,

by policymakers) was that, when low iron levels in the
body were due to low dietary intake of iron, the solution

was to recommend large bolus doses of highly absorb-
able iron to be given between meals (to avoid the iron

being bound to food phytates and related chelators)
and, preferably, with vitamin C to enhance the reduc-

tion of iron from Fe3þ to Fe2þ. This strategy works
against the complex evolved mechanisms for the safe

absorption and distribution of iron and may have
caused significant iatrogenic disease (see below).

Further inferences from recent basic science dis-
coveries relevant to iron fortification and supplementa-
tion derive from a new understanding of hepcidin

regulation and from additional insights into genetic de-
fects in iron pathways. Hepcidin is a downregulator of

iron absorption and traffic, not an enhancer. It func-
tions as the main inhibitor of iron transport from cells

(including enterocytes, hepatocytes, and macrophages)
into the blood circulation. At subthreshold levels of

hepcidin, the divalent metal transporter 1 and ferropor-
tin gates at both ends of the enterocytes are open, and

iron is absorbed efficiently. Stable isotope studies in
Gambian children have shown that iron absorption can

be as high as 50% when hepcidin is switched off65 and
is virtually zero at high levels of circulating hepcidin.

Hepcidin levels are suppressed by iron deficiency and

are elevated by either iron sufficiency/overload or in-

flammation.66 Two stable isotope absorption studies in
Beninese women and Ivorian children demonstrated

that iron absorption was doubled after asymptomatic
malaria infection was cleared and hepcidin concentra-

tions were reduced by approximately 50%.67,68

Therefore, hepcidin provides an elaborate system

for the body to autoregulate iron influx by balancing
the competing signals indicating a need for iron (hyp-

oxia, erythroid drive, and hepatic iron deficiency)
against the possible threat of an infection that might be

fuelled by additional iron. In iron-deficient populations,

hepcidin levels would tend to be low (to allow absorp-
tion) but are often high because systemic inflammation

heralds the threat of infection. The interplay of these
competing factors has been described in some detail for

Gambian and Kenyan children.69 The take-home mes-
sage for policymakers is that, rather than being unable

to absorb adequate levels of iron, people living in un-
sanitary settings devote considerable physiological effort

to exclude iron from their circulation. This is further
validated by the tendency for all but one of the known

genetic defects that alter iron status to lead to iron over-
load rather than deficiency, even in populations living

on a low-iron diet.

IRON, MALARIA, AND OTHER INFECTIONS

A decade ago, the WHO recommended that preschool

children and pregnant women receive universal iron
supplementation in countries in which the prevalence of

anemia exceeded 40%. This included the great majority
of low- and lower-middle–income countries. In practice,

this advice was rarely implemented, and it was deemed

necessary to gather stronger evidence of benefit to
strengthen the arguments of advocacy. To this end, two

very large intervention trials were commissioned in
Pemba Island, Tanzania, and Nepal to compare the im-

pact on overall mortality of iron plus folic acid; iron plus
zinc; iron plus folic acid and zinc; and zinc alone against

placebo in infants and young children. The trial in
Tanzania was stopped early by the trial’s data safety

monitoring board because there was evidence of a higher
incidence of severe adverse events (hospitalizations from

malaria and other infections and deaths) in the two arms
receiving iron plus folic acid than in the zinc alone and

placebo arms.12 The Nepali trial (conducted in a nonma-

larious region) showed no such effect,70 and it was hence
concluded that the adverse events in the trial in Tanzania

had been caused by the interaction between iron and
malaria. Following a series of expert consultations, the

WHO and the United Nations Children’s Fund
(UNICEF) issued a joint statement17 urging caution with

regard to iron supplementation and recommending that
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supplementation be aimed at those who are anemic or at

risk of iron deficiency. They further advised that supple-
mentation be accompanied by strategies to prevent and

treat malaria. Notably, food fortification was deemed to
be safe and was explicitly excluded from this advice be-

cause “the patterns of iron absorption and metabolism
may be substantially different.”17

The adverse outcome of the now infamous Pemba

trial had the benefit of directing funding toward further
field trials and generated a considerable body of basic

research designed to elucidate the reasons behind the
increased numbers of infections and deaths. It was

widely speculated that nontransferrin-bound iron might
be responsible. Under normal circumstances, all iron

in the circulation would be tightly bound within trans-
ferrin and, hence, safely chaperoned to reduce the

likelihood that it could be made available as
nontransferrin-bound iron to any infectious organisms

in the bloodstream. However, large nonphysiological
bolus doses of iron can overwhelm the capacity of trans-

ferrin to collect iron, resulting in the formation of
nontransferrin-bound iron.71 The potential link be-

tween nontransferrin-bound iron and infections is al-
most entirely based on conjecture. There are strong

associations between percent transferrin saturation and
the likelihood of systemic bacterial infections.72 Both

gram-negative and gram-positive bacteria use two basic
strategies to acquire iron from their human hosts: (1)

chelation of iron away from chaperone proteins with
siderophores; and/or (2) direct uptake of hemoglobin

and heme moieties. Some bacterial species even lyse red
blood cells to release the iron they need.73 There is also

recent evidence that human blood collected 3 hours
after consumption of an iron tablet supports greatly

enhanced rates of replication of a number of pathogenic
bacteria,74 but there is no evidence that nontransferrin-

bound iron promotes malaria.
Subsequent to the Pemba trial, it has become clear

that iron deficiency and iron-deficiency anemia are pro-
tective against malaria caused by Plasmodium falcip-
arum. Most impressively, Gwamaka et al.75 monitored

785 children over a period of 3 years in Tanzania and
showed that iron-deficiency anemia significantly

decreased the odds of both subsequent parasitemia
(23% decrease, P< 0.001) and severe malaria (38% de-

crease, P ¼ 0.04). This might operate at both the hep-
atic and the blood stages of the plasmodial life cycle.

Studies in mice have shown that, during an initial infec-
tion, the Plasmodium parasite can protect itself from

competition from another strain by utilizing the host’s
hepcidin pathway to reduce iron in hepatocytes to such

a level that the subsequent infection cannot establish a
foothold.76 This prevents so-called superinfection and

might reduce mortality in children. The mechanism is

more potent when the host is iron deficient. Of prob-

ably greater relevance is the finding that iron-deficient
red blood cells have a markedly reduced capacity to

support plasmodial replication and growth.77 However,
this protection is reversed by the presence of reticulo-

cytes and young red blood cells, which are the favored
niche for the merozoite stage. These latest insights indi-
cate that the successful treatment of iron-deficiency an-

emia will always be accompanied by an increase in
susceptibility to malaria, especially during the period of

transient reticulocytosis required to augment the circu-
lating red cell mass.77 This leads to two policy implica-

tions: first, that all strategies to combat iron-deficiency
anemia (including food fortification) will inevitably

cause a slight increase in the risk of malaria, and se-
cond, that aggressive supplementation strategies that re-

sult in rapid reticulocytosis will result in a transient
period of greatly elevated risk (and, hence, should be

accompanied by preventative malaria therapy).
Even before the Pemba trial, there was considerable

evidence that administration of iron can enhance the
risk of numerous other infections,78–80 but this had

been overlooked by many investigators. More recent
intervention trials have confirmed that the potentially

harmful effects of iron are not limited to an increased
risk of malaria and can also result from adding micro-

nutrient powders containing encapsulated iron to foods
at the point of use. A large cluster-randomized trial in a

nonmalarious area of Pakistan reported a significant
increase in the proportion of days with diarrhea

(P¼ 0.001), bloody diarrhea (P¼ 0.003) and chest in-
drawing (indicative of pneumonia) (P¼ 0.03) in chil-

dren who received a micronutrient powder containing
encapsulated iron (12.5 mg/d).13 A trial in Ghana re-

vealed no apparent increase in the incidence of malaria
but a significant increase in hospitalizations during the

period when sprinkles containing 12.5 mg of iron were
administered.14 The Chilenje Infant Growth, Nutrition,

and Infection Study (CIGNIS), which provided richly
micronutrient-fortified porridge (12.5 mg iron) to 6-
month-old Zambian infants, revealed an increase in the

incidence of lower respiratory tract infections at sched-
uled clinic visits (P¼ 0.02).81 Similarly, a study that ad-

ministered micronutrient powders with a low iron
content (2.5 mg as sodium iron EDTA [NaFeEDTA]) to

Kenyan infants has reported that infants in the iron
group spent significantly more days with cough and

dyspnea.82 In a recently completed trial of physician-
prescribed lipid-based multiple micronutrients in The

Gambia,83 the supplements failed to reduce the fre-
quency of repeat clinic visits and, on secondary analysis,

revealed an increase in repeat visits in the first 3 weeks
of administration in those receiving the fortified lipid-

based nutrient supplements.84 A study in Cambodian
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schoolchildren using 3 different types of micronutrient-

fortified rice (all containing �8 mg of iron per portion)
has demonstrated that micronutrient-fortified rice sig-

nificantly increased the risk of new hookworm infec-
tion.85 In each of these trials, iron was given with

multiple other micronutrients, so it is not certain that
iron caused the pathology, but, on the basis of prior evi-

dence about the importance of iron to microorganisms,
this is the widely held assumption.

Data from these last trials raise potential concerns,
even about point-of-use fortification with iron, al-

though it should be noted that the amounts of iron used

in these trials were higher than those achieved through
point-of-production fortification of staple or other types

of foods.

EFFECTS OF IRON ON THE GUT MICROBIOTA

The latest research is beginning to shed light on the ef-
fects of dietary components, including iron, on the mi-

crobial communities of the gut. The microbiota of the

human gut contains a diverse spectrum of bacteria,
viruses, and bacteriophages all competing for survival

and niche occupancy.86,87 Under optimal circum-
stances, the human host and its microbiome form a mu-

tually supportive and unique symbiotic partnership88–90

that ensures good health for the host.91 As described

above, most bacteria have an obligate need for iron and
have evolved a myriad of biological strategies to obtain

iron, which is made scarce not by its absence but by its
very low solubility in the more common ferric state.

The wide diversity and effectiveness of these bacterial
iron acquisition mechanisms is a testament to the crit-

ical importance of iron for the survival and success of

bacteria.
The bacterial species considered most beneficial

to the host (members of the Lactobacillaceae and
Bifidobacteriaceae families) are unusual in having either

no requirement or a very low requirement for iron.92

The human host has developed elaborate strategies that

can favor the growth of beneficial bacteria. Human milk
has a very low iron content, and lactoferrin in milk

tightly binds iron as a mechanism to limit iron. It is also
probable that any iron taken up by enterocytes and

encased in ferritin will be largely unavailable to poten-
tially pathogenic bacteria in the distal large intestine and

colon, even if it is not absorbed into the body and re-

enters the gut in sloughed enterocytes. If this is the case,
then the major source of iron for bacteria in the gut will

be unabsorbed soluble forms of iron, which will be found
in the highest concentrations when excess iron is con-

sumed (as in the case of therapeutic supplementation).
These theoretical predictions are borne out by

in vitro, animal, and human clinical studies,93 highlights

of which are summarized here. First, evidence that iron

administration is associated with an increase in the
prevalence of diarrhea was summarized in the previous

section. The effect of iron on the spectrum of bacterial
species in the gut has also been investigated.

Zimmermann et al.94 described a decrease in beneficial
lactobacilli and bifidobacteria and an increase in poten-

tially pathogenic enterobacteria in stool samples from
Ivorian schoolchildren who received biscuits fortified

with iron. The group receiving iron also had much
higher levels of fecal calprotectin, a marker of gut in-

flammation.95 Very similar results were obtained in

Kenyan infants who received porridge fortified at home
with 2.5 mg of iron as Fe-EDTA or 12.5 mg of iron as

ferrous fumarate when compared with placebo controls
who received the same multiple micronutrient powders,

but without iron.96 The effect on fecal calprotectin was
particularly striking and is also concerning because en-

vironmental enteropathy (persistent gut damage and in-
flammation that leads to malabsorption) is a major

cause of growth failure in children in poor environ-
ments. The CIGNIS trial in Zambia also found a signifi-

cant increase in the ratio of lactulose to mannitol (an

index of gut permeability) in human immunodeficiency
virus (HIV)-exposed and -unexposed young children

who received a micronutrient-fortified porridge com-
pared with those who received the unfortified porridge.97

These human clinical studies have been supported
by results from in vitro culture systems demonstrating

that the addition of small amounts of iron to kinetic
models of human gut metabolism causes a shift toward

a more toxic profile within the microbiota.98–99

Although the long-term clinical relevance of these find-

ings is still unknown, these data suggest that the influ-
ence of iron on the gut microbiota is an important

factor that needs to be evaluated in studies investigating
the effects of any dietary intervention.

IRON AND BLOOD DISORDERS

Any program for universal fortification of foods needs
to consider whether there might be subsections of the

recipient population who could be harmed by the addi-
tion of the nutrient. For instance, the United Kingdom

has not adopted folate fortification, partly due to con-
cerns that additional folate might promote tumor

growth in cancer patients or conceal pernicious anemia

in the elderly. The United States, on the other hand, has
adopted folate fortification.

In the case of iron, an important consideration is
whether there are circumstances in which recipients

could become iron overloaded to an extent that would
damage their health with life-threatening consequences

(primarily through induction of cirrhosis, diabetes, or
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cardiomyopathy). There are a number of clinical condi-

tions in which this might be a concern, notably hemo-
chromatosis, beta thalassemia, and repeated blood

transfusions.

Hemochromatosis. Hemochromatosis is the generic

term for iron overload, of which the two leading causes

are hereditary hemochromatosis and transfusional iron
overload (see below). Hereditary hemochromatosis,

which has various genetic causes with differing clinical

manifestations, leads to iron overload and subsequent
toxicity, especially in the liver. Treatment is possible if

the condition is recognized early. Hereditary hemo-

chromatosis is most common in people of Celtic,
English, or Scandinavian origin, in whom the preva-

lence is between 0.5% and 1%.

Beta thalassemia. Beta thalassemia is a genetic defect

that prevents the production of the beta chain of hemo-

globin and leads to microcytic anemia, which causes a
reticulocytosis as the body attempts to compensate.

This in turn causes the downregulation of hepcidin

(mediated by the newly discovered erythroferrone),
which leads to iron overload. Patients require regular

blood transfusions, which further contribute to the

accumulation of iron. If not treated by iron chelation,
the resultant iron overload can cause myocardial sidero-

sis and death from heart failure. Beta thalassemia affects

about 1 in 100 000 people globally.

Transfusional iron overload. A number of conditions
that require regular blood transfusion (including beta

thalassemia) can lead to secondary iron overload.

Though serious for the individuals affected, such condi-
tions are rare, and the danger of iron overload can be

ameliorated by chelation therapy.

POTENTIAL ROLE OF IRON IN OTHER CIRCUMSTANCES

Numerous articles about the role of iron in neurodege-

nerative diseases have been published, several of which

are included in this review.100–102 Although a link
between iron accumulation and neurodegenerative dis-

ease has been recognized, the complete mechanisms

have not been elucidated. There are many factors that
could potentially trigger these complex diseases, includ-

ing the presence of other transition metals such as cop-

per, zinc, and aluminium.103,104 For the purpose of this
review, there is no evidence that intake of iron within

the recommended dietary allowances could be a direct

cause of neuropathies.
A follow-up study of 10-year-old Chilean children

who participated as infants in a randomized controlled

trial of high-iron vs low-iron formulas is sometimes

cited as demonstrating significantly adverse outcomes

at 10 years of age for a few of the psychometric meas-

ures,105 but this conclusion is based on a post-hoc suba-

nalysis that resulted in a very small sample size and,

hence, requires replication.

Similarly, iron has been associated with adverse

cardiovascular effects,106 although the simple positive

association observed in cross-sectional epidemiological

studies does not confirm causality. In cases of trans-

plantation of heart or kidney, both iron deficiency and

overload may lead to complications.107 However, as far

as can be determined, there is no information that

would link food fortification to any of these problems.

The relationship between iron and some cancers

has been considered frequently in the last half century.

Research for cancer treatments shows that iron could

act both as a factor of carcinogenesis108 and as a cyto-

toxic agent for cancerous cells.109,110 The risk of color-

ectal cancer could be connected to heme iron

consumption,111 but there is no conclusive link with

total dietary iron.112 After considering data from

numerous studies, the International Agency for

Research on Cancer recently examined the contribution

of heme iron from meat intake to increased risk of

cancer.113

For type 2 diabetes, epidemiological observations

and experimental studies show a clear link between iron

overload and risk of diabetes.114 Here again, from a

nutritional perspective, only high heme iron intake

showed a significant association with type 2 diabetes.

Total dietary iron, nonheme iron, and even supplemen-

tation are not significantly associated with the risk of

diabetes.115

Complex interactions between iron deficiency,

malaria, and HIV infection have been reported.116,117

Anemia is highly prevalent in pediatric populations in

Africa and Southeast Asia, and in many countries there

is overlap between patients infected with HIV and

malaria, and anemia. Treating iron deficiency can result

in improved survival of HIV-infected children,117 but –

as noted previously in this review – the additional

intake of iron can also favor malaria. Consequently, it is

difficult to decide whether a population of children at

risk of both HIV and malaria infections would benefit

from iron supplementation unless there is simultaneous

provision of malaria treatments or precautions (such as

insecticide-treated bed nets). Joint infection with HIV

and Mycobacterium tuberculosis can promote anemia

and iron redistribution, but again, additional iron

intake may not be safe.118 During the preparation of

this review, no published data was found about iron for-

tification (low doses) in patients with HIV infection,

HIV infection and malaria, or bacterial infections.

56 Nutrition ReviewsVR Vol. 75(1):49–60



BALANCING THE RISK AND BENEFITS OF
ADDITIONAL IRON INTAKE

The intensive global efforts to combat iron deficiency

and its associated anemia are predicated on the belief

that iron plays a crucial role in human health, especially

in early child development, since there is evidence of

critical windows of time beyond which any deficits in

brain development cannot be rectified.4–6 On the basis

of this concern, the remainder of this review will focus

more on the potential negative effects of iron.
The safety concerns related to the provision of

excess iron to populations with low baseline health sta-

tus (such as those in malaria-endemic areas) call for the

adoption of alternative strategies. A central question is

whether to use a targeted approach, ie, by providing

iron only to those who are clearly iron deficient, or to

provide iron to all those in whom iron deficiency

presents the greatest health risks (eg, infants, young

children, and pregnant women). A major barrier to

adopting the targeted approach is the detection of iron

deficiency. Aside from the lack of established bio-

markers of iron status that can be easily applied in the

field, screening for iron status at the population level is

challenging. Another issue is that supplements and

point-of-use fortification are short-term measures bet-

ter suited as targeted interventions in a defined group

rather than as long-term strategies that can be imple-

mented at the population level.
These considerations, when taken together with

current knowledge of the potential adverse effects of

iron in low-income populations at risk of disease, point

toward the use of very low doses of iron that can be

delivered consistently. To this end, food fortification

presents a potential strategy to mitigate the effects of

iron deficiency across a population. In developed coun-

tries, nationwide food-fortification programs have been

well established. Folic acid fortification, for example,

has played a key role in reducing birth defects in

Canada, the United States, and Chile and is a good

strategy for reaching the population of women at risk of

deficiency.119,120 The ingestion of small amounts of iron

with food provides an opportunity to minimize circulat-

ing levels of nontransferrin-bound iron or high concen-

trations of unabsorbed iron in the gut.

A randomized, placebo-controlled, double-blind

intervention trial performed a head-to-head compari-

son between iron supplements and food fortification in

425 Vietnamese school-aged children.121 Results

showed that, although both interventions yielded

significant improvements over placebo in terms of

hemoglobin, ferritin, and body iron levels and anemia

status, the increases in the fortification group were less

pronounced compared with those in the supplement

group. These differences were most likely due to the

lower amounts of iron received with fortification. After
comparing the effectiveness of both approaches, the

authors concluded that, in a population of anemic chil-
dren with mild iron deficiency, iron fortification should

be the preferred strategy over the longer term.
Infants and young children are among those at

greatest risk of not only iron deficiency but also the

developmental consequences of iron deficiency.
Although infants aged 6 to 24 months are not often

included in global estimates of iron-deficiency anemia,
current evidence indicates that this group is at particu-

larly high risk.122 Beyond 6 months of age, an infant’s
need for iron begins to exceed the amount provided by

breast milk.123,124 This is more pronounced in infants
who show rapid growth, such as low-birth-weight

infants who undergo catch-up growth.122 A recent sys-
tematic review of 18 trials found that the use of milk

and cereal products fortified with iron plus multiple
micronutrients increased hemoglobin levels by 8.7 g/L

in children aged 6 months to 5 years and reduced the
risk of anemia by 57% compared with the use of non-

fortified items.18 The introduction of iron-rich comple-
mentary foods has also shown a beneficial effect on the

iron status of infants.125 The Chilean National
Complementary Feeding Program showed that iron-

fortified milk improved iron status and reduced the
prevalence of anemia over the long term in children

aged 11 to 18 months. The prevalence of anemia was
27% prior to the introduction of the program but was

reduced to 9% 1 year after the introduction of the pro-
gram (P< 0.001).126 After adjusting for confounding

factors, the consumption of iron-fortified milk was
associated with higher hemoglobin concentrations and

a lower prevalence of anemia. The benefits were appa-
rent 10 years after the implementation of the program,

suggesting long-term, sustained effects on iron status
and the prevalence of anemia in children.

Thus far, there has been no data demonstrating spe-
cific adverse effects of iron-fortified food items. In their
systematic review, Eichler et al.18 suggest that the recom-

mendations for iron supplements may not apply to forti-
fied foods, since the daily dose of micronutrients

obtained with fortified foods is far lower than that
obtained with supplementation. There are still uncertain-

ties about the hemoglobin cutoff values used to define
anemia in children and in specific populations such as

those with hemochromatosis, beta thalassemia, and
repeated blood transfusions. Thus far, most studies have

used iron status, hemoglobin levels, or anemia as meas-
ures of efficacy of iron fortification. Long-term functional

outcomes – such as growth, cognitive development, mor-
bidity, economic productivity – are more difficult to

measure, but additional data on these will be the true
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measure of the long-term safety and efficacy of any inter-

vention. Long-term data on the use of fortified foods in

populations with a high disease burden (including

malaria and other infectious diseases) are thus needed to

determine the best means of addressing iron deficiency at

the population level.

CONCLUSION

The evidence summarized here leads to several conclu-

sions. First, new insights into human iron metabolism,

especially those derived from the discovery of the hepci-

din/ferroportin system for regulating iron uptake, sug-

gest that the strategy of providing large nonphysiological

bolus doses of highly absorbable iron as supplements

works against the highly evolved systems for safely main-

taining iron homeostasis in humans and, hence, may be

hazardous. Second, an important cause of iron deficiency

is the inflammatory blockade, and any strategy to reduce

iron deficiency and iron-deficiency anemia should

include interventions to limit infections and inflamma-

tion (including low-grade inflammation). If inflamma-

tion can be reduced, then elimination of the iron

blockade will permit healthy iron homeostasis at lower

levels of dietary iron. Third, chemical or biological forti-

fication of staple foods provides a logical approach as a

public health strategy and should be pursued. The data

do not support the conclusion that iron-fortified foods

are without risk, but any possible risks are probably

much lower than those associated with the high burden

of disease and reduced functional capacity caused by

iron deficiency worldwide. When cost or any other con-

straint prevents treatment of inflammation or infection,

fortification with low doses of iron homogeneously

diluted in a larger mass of food remains one of the safest

strategies available to reduce the risk of deficiency. These

considerations are important in the context of the

United Nations Sustainable Development Goals, since

iron-deficiency anemia is a main indicator of micronu-

trient deficiencies among women of reproductive age

and children under the age of 5 years. Future research is

required to examine the effects of unabsorbed iron on

the gut microbiota. Further testing of compounds con-

taining iron that is absorbable in the human duodenum

but is unavailable to potentially pathogenic bacteria in

the large intestine and colon is warranted.
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36. Moreira-Ara�ujo RSR, Ara�ujo MAM, Arêas JAG. Fortified food made by the extru-
sion of a mixture of chickpea, corn and bovine lung controls iron-deficiency an-
aemia in preschool children. Food Chem. 2008;107:158–164.

37. Theil EC, Burton JW, Beard JL. A sustainable solution for dietary iron deficiency
through plant biotechnology and breeding to increase seed ferritin content. Eur
J Clin Nutr. 1997;51(suppl 4):S28–S31.

38. Liao X, Yun S, Zhao G. Structure, function, and nutrition of phytoferritin: a newly
functional factor for iron supplement. Crit Rev Food Sci Nutr.
2014;54:1342–1352.

39. Powell JJ, Bruggraber SFA, Faria N, et al. A nano-disperse ferritin-core mimetic
that efficiently corrects anemia without luminal iron redox activity.
Nanomedicine. 2013;10:1529–1538.

40. Codex Alimentarius Commission. Guidelines on Nutrition Labelling. CAC/GL 2-
1985. Rome, Italy: Food and Agriculture Organization of the United Nations;
1985.

41. Codex Alimentarius Commission. Guidelines for Use of Nutrition and Health
Claims. CAC/GL 23-1997. Rome, Italy: Food and Agriculture Organization of the
United Nations; 1997.
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