32 research outputs found

    The diatoms test in veterinary medicine: a pilot study on cetaceans and sea turtles

    Get PDF
    Fishing activities are considered one of the most relevant threats for cetaceans and sea turtles con- servation since these animals are sometimes found dead entangled in fishing gears. Currently, postmortem diagnosis is based mainly on the presence of nets and lines on the body and the related marks and injuries evident at gross examination. A more detailed and objective evidence is needed to clarify doubts cases and the diatoms technique, used in forensic human medicine, could support drowning diagnosis also in this field. Diatoms\u2019 investigation was implemented to be applied in ma- rine vertebrate on 8 striped (Stenella coeruleoalba) and 1 bottlenose (Tursiops truncatus) dolphins and 5 sea turtles (Caretta caretta) stranded along the Italian coastlines with a likely cause of death hypothized on necropsies carried out by veterinary pathologists. Diatoms were microscopically searched in the bone marrow collected from long bones implementing protocols used in human medicine and their presence was observed in 4 cetaceans and 2 sea turtles. Despite a clear relation between diatoms\u2019 presence and amount and the likely cause of death was not proved due to the poor number of samples, the higher burden of diatoms was found in 3 animals deemed to be death for the interaction with human activity. Despite more studied are necessary to identify the possible relation between the cause of death and diatoms\u2019 findings, the present study implemented this technique to be adapted to marine animals, confirming its possible application also in veterinary forensic medi- cine

    Efficient isolation on Vero.DogSLAMtag cells and full genome characterization of Dolphin Morbillivirus (DMV) by next generation sequencing

    Get PDF
    The Dolphin Morbillivirus (DMV) genome from the frst Mediterranean epidemic (1990-\u201992) is the only cetacean Morbillivirus that has been completely sequenced. Here, we report the frst application of next generation sequencing (NGS) to morbillivirus infection of aquatic mammals. A viral isolate, representative of the 2006-\u201908 Mediterranean epidemic (DMV_IZSPLV_2008), efciently grew on Vero.DogSLAMtag cells and was submitted to whole genome characterization by NGS. The fnal genome length was 15,673 nucleotides, covering 99.82% of the DMV reference genome. Comparison of DMV_IZSPLV_2008 and 1990-\u201992 DMV strain sequences revealed 157 nucleotide mutations and 47 amino acid changes. The sequence similarity was 98.7% at the full genome level. Whole-genome phylogeny suggested that the DMV strain circulating during the 2006-\u201908 epidemics emerged from the 1990-\u201992 DMV strain. Viral isolation is considered the \u201cgold standard\u201d for morbillivirus diagnostics but efcient propagation of infectious virus is difcult to achieve. The successful cell replication of this strain allowed performing NGS directly from the viral RNA, without prior PCR amplifcation. We therefore provide to the scientifc community a second DMV genome, representative of another major outbreak. Interestingly, genome comparison revealed that the neglected L gene encompasses 74% of the genetic diversity and might serve as \u201chypervariable\u201d target for strain characterization

    Cellular Prion Protein Expression in the Brain Tissue from Brucella ceti-Infected Striped Dolphins (Stenella coeruleoalba)

    Get PDF
    Brucella ceti, a zoonotic pathogen of major concern to cetacean health and conservation, is responsible for severe meningo-encephalitic/myelitic lesions in striped dolphins (Stenella coeruleoalba), often leading to their stranding and death. This study investigated, for the first time, the cellular prion protein (PrPc) expression in the brain tissue from B. ceti-infected, neurobrucellosis-affected striped dolphins. Seven B. ceti-infected, neurobrucellosis-affected striped dolphins, found stranded along the Italian coastline (6) and in the Canary Islands (1), were investigated, along with five B. ceti-uninfected striped dolphins from the coast of Italy, carrying no brain lesions, which served as negative controls. Western Blot (WB) and immunohistochemistry (IHC) with an anti-PrP murine monoclonal antibody were carried out on the brain parenchyma of these dolphins. While PrPc IHC yielded inconclusive results, a clear-cut PrPc expression of different intensity was found by means of WB analyses in the brain tissue of all the seven herein investigated, B. ceti-infected and neurobrucellosis-affected cetacean specimens, with two dolphins stranded along the Italian coastline and one dolphin beached in Canary Islands also exhibiting a statistically significant increase in cerebral PrPc expression as compared to the five Brucella spp.-negative control specimens. The significantly increased PrPc expression found in three out of seven B. ceti-infected, neurobrucellosis-affected striped dolphins does not allow us to draw any firm conclusion(s) about the putative role of PrPc as a host cell receptor for B. ceti. Should this be the case, an upregulation of PrPc mRNA in the brain tissue of neurobrucellosis-affected striped dolphins could be hypothesized during the different stages of B. ceti infection, as previously shown in murine bone marrow cells challenged with Escherichia coli. Noteworthy, the inflammatory infiltrates seen in the brain and in the cervico-thoracic spinal cord segments from the herein investigated, B. ceti-infected and neurobrucellosis-affected striped dolphins were densely populated by macrophage/histiocyte cells, often harboring Brucella spp. antigen in their cytoplasm, similarly to what was reported in macrophages from mice experimentally challenged with B. abortus. Notwithstanding the above, much more work is needed in order to properly assess the role of PrPc, if any, as a host cell receptor for B. ceti in striped dolphins

    Specific capture and whole‑genome phylogeography of Dolphin morbillivirus

    Get PDF
    Dolphin morbillivirus (DMV) is considered an emerging threat having caused several epidemics worldwide. Only few DMV genomes are publicly available. Here, we report the use of target enrichment directly from cetacean tissues to obtain novel DMV genome sequences, with sequence comparison and phylodynamic analysis. RNA from 15 tissue samples of cetaceans stranded along the Italian and French coasts (2008–2017) was purified and processed using custom probes (by bait hybridization) for target enrichment and sequenced on Illumina MiSeq. Data were mapped against the reference genome, and the novel sequences were aligned to the available genome sequences. The alignment was then used for phylogenetic and phylogeographic analysis using MrBayes and BEAST. We herein report that target enrichment by specific capture may be a successful strategy for whole-genome sequencing of DMV directly from field samples. By this strategy, 14 complete and one partially complete genomes were obtained, with reads mapping to the virus up to 98% and coverage up to 7800X. The phylogenetic tree well discriminated the Mediterranean and the NE-Atlantic strains, circulating in the Mediterranean Sea and causing two different epidemics (2008–2015 and 2014–2017, respectively), with a limited time overlap of the two strains, sharing a common ancestor approximately in 1998

    Immunohistochemical investigations on Brucella ceti-infected, neurobrucellosis-affected striped dolphins (Stenella coeruleoalba)

    Get PDF
    Bacteria of the genus Brucella cause brucellosis, an infectious disease common to humans as well as to terrestrial and aquatic mammals. Since 1994 several cases of Brucella spp. infection have been reported in marine mammals worldwide. Indeed, since human brucellosis ranks as one of the most common bacterial zoonotic infections on a global scale, it is necessary to increase our knowledge about it also in the marine environment. Brucella ceti, which is phenotypically similar to other smooth brucellae as B. abortus and B. melitensis, shares with the latter two the same surface antigens that are routinely used for the serological diagnosis of Brucella spp. infection. Marine mammal Brucella spp. infections are characterized by a pathogenicity similar to their terrestrial counterparts, with the occurrence of abortion, stillbirth and orchitis and an involvement of the host’s central nervous system (CNS), similarly to what happens in mankind. While sero-epidemiological data suggest that Brucella spp. infection is widespread globally, detecting Brucella spp.-associated antigens by immunohistochemistry (IHC) in tissues from infected animals is often troublesome. The present study was aimed at investigating, by means of IHC based upon the utilization of an anti-Brucella LPS monoclonal antibody (MAb), the CNS immunoreactivity (IR) shown by B. ceti-infected, neurobrucellosis-affected striped dolphins

    Toxoplasma gondii Genetic Diversity in Mediterranean Dolphins

    Get PDF
    Toxoplasma gondii constitutes a major zoonotic agent but also has been frequently identified as an important cause of clinical disease (e.g., abortion, pneumonia, encephalitis) in wildlife; specifically, T. gondii has been associated with neurological disease in cetaceans. This study investigated the genetic diversity of T. gondii strains involved in infections in dolphins found stranded in the Mediterranean coastlines of Italy. Tissue samples from 16 dolphins (Stenella coeruleoalba and Tursiops truncatus species) positive for T. gondii-DNA presence by PCR were examined by histology and subjected to further genetic characterization of strains detected by PCR-RFLP and multilocus PCR-sequencing assays. According to fully genotyped samples, the genotypes ToxoDB#3 (67%) and #2 (22%) were detected, the latter being reported for the first time in cetaceans, along with a mixed infection (11%). Subtyping by PCR-seq procedures provided evidence of common point mutations in strains from southwestern Europe. Despite evidence of T. gondii as a cause of neurological disease in dolphins, sources of infections are difficult to identify since they are long-living animals and some species have vast migration areas with multiple chances of infection. Finally, the genetic diversity of T. gondii found in the dolphins studied in the Mediterranean coastlines of Italy reflects the main genotypes circulating inland in the European continent

    Local viscoelastic response of direct and indirect dental restorative composites measured by AFM

    No full text
    We investigated the viscoelastic response of direct and indirect dental restorative composites by the novel technique of AM-FM atomic force microscopy. We selected four composites for direct restorations (Adonis, Optifil, EPH, CME) and three composites for indirect restorations (Gradia, Estenia, Signum). Scanning electron microscopy with micro-analysis was also used to support the results. The mean storage modulus of all composites was in the range of 10.2-15.2 GPa. EPH was the stiffest (p<0.05 vs. all other composites but Adonis and Estenia), while no significant difference was observed between direct and indirect group (p 650.05). For the loss tangent, Gradia had the highest value (~0.3), different (p<0.05) from Optifil (~0.01) and EPH (~0.04) despite the large coefficient of variation (24%), and the direct composites showed higher loss tangent (p<0.01) than the indirect composites. All composites exhibited minor contrast at the edge of fillers, showing that these are pre-polymerized, as confirmed by EDS

    Increased glomerular cell (podocyte) apoptosis in rats with streptozotocin-induced diabetes mellitus: role in the development of diabetic glomerular disease

    No full text
    none10noAims/hypothesis Podocyte loss by apoptosis, in addition to favouring progression of established diabetic nephropathy, has been recently indicated as an early phenomenon triggering the initiation of glomerular lesions. This study aimed to assess the rate of glomerular cell death and its relationship with renal functional, structural and molecular changes in rats with experimental diabetes. Methods Male Sprague-Dawley rats with streptozotocin-induced diabetes and coeval non-diabetic control animals were killed at 7 days and at 2, 4 and 6 months for the assessment of apoptosis, renal function, renal structure and the expression of podocyte markers and apoptosis- and cell cycle-related proteins. Results Glomerular cell apoptosis was significantly increased in diabetic vs non-diabetic rats at 4 months and to an even greater extent at 6 months, with podocytes accounting for 70% of apoptosing cells. The increase in apoptosis was preceded by increases in proteinuria, albuminuria and mean glomerular and mesangial areas, and by reductions in glomerular cell density and content of synaptopodin and Wilms' tumour protein-1. It coincided with the development of mesangial expansion and glomerular sclerosis, and with the upregulation/ activation both of tumour protein p53, which increased progressively throughout the study, and of p21 (also known as cyclin- dependent kinase inhibitor 1A, CIP1 and WAF1), which peaked at 4 months and decreased thereafter. Conclusions/interpretation Glomerular cell (podocyte) apoptosis is not an early feature in the course of experimental diabetic glomerulopathy, since it is preceded by glomerular hypertrophy, which may decrease glomerular cell density to the point of inducing compensatory podocyte hypertrophy. This is associated with reduced podocyte protein expression (podocytopathy) and proteinuria, and ultimately results in apoptotic cell loss (podocytopenia), driving progression to mesangial expansion and glomerular sclerosis.mixedMENINI S; IACOBINI C; ODDI G; RICCI C; SIMONELLI P; FALLUCCA S; GRATTAROLA M; PUGLIESE F; C. PESCE; PUGLIESE GMenini, S; Iacobini, C; Oddi, G; Ricci, C; Simonelli, P; Fallucca, S; Grattarola, M; Pugliese, F; Pesce, Carlo; Pugliese, G
    corecore