10 research outputs found

    Clinical and Laboratorial Features That May Differentiate 46,XY DSD due to Partial Androgen Insensitivity and 5α-Reductase Type 2 Deficiency

    Get PDF
    The aim of this study was to search for clinical and laboratorial data in 46,XY patients with ambiguous genitalia (AG) and normal testosterone (T) synthesis that could help to distinguish partial androgen insensitivity syndrome (PAIS) from 5α-reductase type 2 deficiency (5α-RD2) and from cases without molecular defects in the AR and SRD5A2 genes. Fifty-eight patients (51 families) were included. Age at first evaluation, weight and height at birth, consanguinity, familial recurrence, severity of AG, penile length, LH, FSH, T, dihydrotestosterone (DHT), Δ4-androstenedione (Δ4), and T/DHT and T/Δ4 ratios were evaluated. The AR and SRD5A2 genes were sequenced in all cases. There were 9 cases (7 families) of 5α-RD2, 10 cases (5 families) of PAIS, and 39 patients had normal molecular analysis of SRD5A2 and AR genes. Age at first evaluation, birth weight and height, and T/DHT ratio were lower in the undetermined group, while penile length was higher in this group. Consanguinity was more frequent and severity of AG was higher in 5α-RD2 patients. Familial recurrence was more frequent in PAIS patients. Birth weight and height, consanguinity, familial recurrence, severity of AG, penile length, and T/DHT ratio may help the investigation of 46,XY patients with AG and normal T synthesis

    46,xx Dsd And Antley-bixler Syndrome Due To Novel Mutations In The Cytochrome P450 Oxidoreductase Gene.

    No full text
    Deficiency of the enzyme P450 oxidoreductase is a rare form of congenital adrenal hyperplasia with characteristics of combined and partial impairments in steroidogenic enzyme activities, as P450 oxidoreductase transfers electrons to CYP21A2, CYP17A1, and CYP19A1. It results in disorders of sex development and skeletal malformations similar to Antley-Bixley syndrome. We report the case of a 9-year-old girl who was born with virilized genitalia (Prader stage V), absence of palpable gonads, 46,XX karyotype, and hypergonadotropic hypogonadism. During the first year of life, ovarian cyst, partial adrenal insufficiency, and osteoarticular changes, such as mild craniosynostosis, carpal and tarsal synostosis, and limited forearm pronosupination were observed. Her mother presented severe virilization during pregnancy. The molecular analysis of P450 oxidoreductase gene revealed compound heterozygosis for the nonsense p.Arg223*, and the novel missense p.Met408Lys, inherited from the father and the mother, respectively.56578-8

    Clinical And Molecular Spectrum Of Patients With 17β-hydroxysteroid Dehydrogenase Type 3 (17-β-hsd3) Deficiency.

    No full text
    The enzyme 17β-hydroxysteroid dehydrogenase type 3 (17-β-HSD3) catalyzes the conversion of androstenedione to testosterone in the testes, and its deficiency is a rare disorder of sex development in 46,XY individuals. It can lead to a wide range of phenotypic features, with variable hormonal profiles. We report four patients with the 46,XY karyotype and 17-β-HSD3 deficiency, showing different degrees of genital ambiguity, increased androstenedione and decreased testosterone levels, and testosterone to androstenedione ratio G novel mutation, and c.277+4A>T mutation, both located within the intron 3 splice donor site of the HSD17B3 gene, were identified in case 3. In addition, homozygosis for the missense p.Ala203Val, p.Gly289Ser, p.Arg80Gln mutations were found upon HSD17B3 gene sequencing in cases 1, 2, and 4, respectively.56533-

    Espectro clínico e molecular de pacientes com deficiência de 17β-hidroxiesteroide desidrogenase tipo 2 (17-β-HSD3)

    No full text
    The enzyme 17&#946;-hydroxysteroid dehydrogenase type 3 (17-&#946;-HSD3) catalyzes the conversion of androstenedione to testosterone in the testes, and its deficiency is a rare disorder of sex development in 46,XY individuals. It can lead to a wide range of phenotypic features, with variable hormonal profiles. We report four patients with the 46,XY karyotype and 17-&#946;-HSD3 deficiency, showing different degrees of genital ambiguity, increased androstenedione and decreased testosterone levels, and testosterone to androstenedione ratio < 0.8. In three of the patients, diagnosis was only determined due to the presence of signs of virilization at puberty. All patients had been raised as females, and female gender identity was maintained in all of them. Compound heterozygosis for c.277+2T&gt;G novel mutation, and c.277+4A&gt;T mutation, both located within the intron 3 splice donor site of the HSD17B3 gene, were identified in case 3. In addition, homozygosis for the missense p.Ala203Val, p.Gly289Ser, p.Arg80Gln mutations were found upon HSD17B3 gene sequencing in cases 1, 2, and 4, respectively. Arq Bras Endocrinol Metab. 2012;56(8):533-9A enzima 17&#946;-hidroxiesteroide desidrogenase tipo 3 (17-&#946;-HSD3) catalisa a conversão de androstenediona a testosterona nos testículos, e sua deficiência é uma forma rara de distúrbio do desenvolvimento do sexo em indivíduos 46,XY. A desordem apresenta um amplo espectro de características fenotípicas e de resultados de dosagens laboratoriais. Neste trabalho, são relatados quatro casos de deficiência da 17-&#946;-HSD3 com cariótipo 46,XY, ambiguidade genital em diversos graus, androstenediona aumentada, testosterona diminuída, e relação testosterona e androstenediona < 0,8. Em três das pacientes, o diagnóstico foi suspeitado devido à presença de sinais de virilização na puberdade. Todos os pacientes foram criados como mulheres, e a identidade de gênero feminino foi mantida em todas elas. A heterozigose composta da mutação nova c.277+2T&gt;G e da mutação c.277+4A&gt;T, ambas localizadas no sítio doador de splicing do íntron 3 do gene HSD17B3, foi identificada no caso 3. Além dessas, as mutações missense p.Ala203Val, p.Gly289Ser, p.Arg80Gln foram identificadas em homozigose pelo sequenciamento do gene HSD17B3 dos casos 1, 2 e 4, respectivamente. Arq Bras Endocrinol Metab. 2012;56(8):533-953353

    Música, raça e preconceito no ensino fundamental: notas iniciais sobre hierarquia da cor entre adolescentes

    No full text

    NEOTROPICAL CARNIVORES: a data set on carnivore distribution in the Neotropics

    No full text
    Mammalian carnivores are considered a key group in maintaining ecological health and can indicate potential ecological integrity in landscapes where they occur. Carnivores also hold high conservation value and their habitat requirements can guide management and conservation plans. The order Carnivora has 84 species from 8 families in the Neotropical region: Canidae; Felidae; Mephitidae; Mustelidae; Otariidae; Phocidae; Procyonidae; and Ursidae. Herein, we include published and unpublished data on native terrestrial Neotropical carnivores (Canidae; Felidae; Mephitidae; Mustelidae; Procyonidae; and Ursidae). NEOTROPICAL CARNIVORES is a publicly available data set that includes 99,605 data entries from 35,511 unique georeferenced coordinates. Detection/non-detection and quantitative data were obtained from 1818 to 2018 by researchers, governmental agencies, non-governmental organizations, and private consultants. Data were collected using several methods including camera trapping, museum collections, roadkill, line transect, and opportunistic records. Literature (peer-reviewed and grey literature) from Portuguese, Spanish and English were incorporated in this compilation. Most of the data set consists of detection data entries (n = 79,343; 79.7%) but also includes non-detection data (n = 20,262; 20.3%). Of those, 43.3% also include count data (n = 43,151). The information available in NEOTROPICAL CARNIVORES will contribute to macroecological, ecological, and conservation questions in multiple spatio-temporal perspectives. As carnivores play key roles in trophic interactions, a better understanding of their distribution and habitat requirements are essential to establish conservation management plans and safeguard the future ecological health of Neotropical ecosystems. Our data paper, combined with other large-scale data sets, has great potential to clarify species distribution and related ecological processes within the Neotropics. There are no copyright restrictions and no restriction for using data from this data paper, as long as the data paper is cited as the source of the information used. We also request that users inform us of how they intend to use the data
    corecore