1,329 research outputs found

    Methylmercury in marine ecosystems : spatial patterns and processes of production, bioaccumulation, and biomagnification

    Get PDF
    Author Posting. © International Association for Ecology and Health, 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in EcoHealth 5 (2008): 399-408, doi:10.1007/s10393-008-0201-1.The spatial variation of MeHg production, bioaccumulation and biomagnification in marine food webs is poorly characterized but critical to understanding the links between sources and higher trophic levels such as fish that are ultimately vectors of human and wildlife exposure. This paper discusses both large and local scale processes controlling Hg supply, methylation, bioaccumulation and transfer in marine ecosystems. While global estimates of Hg supply suggest important open ocean reservoirs of MeHg, only coastal processes and food webs are known sources of MeHg production, bioaccumulation, and bioadvection. The patterns observed to date suggest that not all sources and biotic receptors are spatially linked and that physical and ecological processes are important in transferring MeHg from source regions to bioaccumulation in marine food webs and from lower to higher trophic levels.Supported by NIH Grant Number P42 ESO7373 from the NIEHS, SERDP funds from the Department of Defense, the ESSRF (Environmental Science Strategic Research Fund) DFO, Canada, Woods Hole Sea Grant, Woods Hole Coastal Ocean Institute, National Science Foundation, and RI-INBRE Grant #P20RR016457 from NCRR, NIH

    The Diabetes Remission Clinical Trial (DiRECT): protocol for a cluster randomised trial

    Get PDF
    Background: Despite improving evidence-based practice following clinical guidelines to optimise drug therapy, Type 2 diabetes (T2DM) still exerts a devastating toll from vascular complications and premature death. Biochemical remission of T2DM has been demonstrated with weight loss around 15kg following bariatric surgery and in several small studies of non-surgical energy-restriction treatments. The non-surgical Counterweight-Plus programme, running in Primary Care where obesity and T2DM are routinely managed, produces >15 kg weight loss in 33 % of all enrolled patients. The Diabetes UK-funded Counterpoint study suggested that this should be sufficient to reverse T2DM by removing ectopic fat in liver and pancreas, restoring first-phase insulin secretion. The Diabetes Remission Clinical Trial (DiRECT) was designed to determine whether a structured, intensive, weight management programme, delivered in a routine Primary Care setting, is a viable treatment for achieving durable normoglycaemia. Other aims are to understand the mechanistic basis of remission and to identify psychological predictors of response. Methods/Design: Cluster-randomised design with GP practice as the unit of randomisation: 280 participants from around 30 practices in Scotland and England will be allocated either to continue usual guideline-based care or to add the Counterweight-Plus weight management programme, which includes primary care nurse or dietitian delivery of 12-20weeks low calorie diet replacement, food reintroduction, and long-term weight loss maintenance. Main inclusion criteria: men and women aged 20-65years, all ethnicities, T2DM 0-6years duration, BMI 27-45 kg/m2. Tyneside participants will undergo Magnetic Resonance (MR) studies of pancreatic and hepatic fat, and metabolic studies to determine mechanisms underlying T2DM remission. Co-primary endpoints: weight reduction ≥ 15 kg and HbA1c <48 mmol/mol at one year. Further follow-up at 2 years. Discussion: This study will establish whether a structured weight management programme, delivered in Primary Care by practice nurses or dietitians, is a viable treatment to achieve T2DM remission. Results, available from 2018 onwards, will inform future service strategy

    Diversification of an Endemic Southeast Asian Genus: Phylogenetic Relationships of the Spiderhunters (Nectariniidae: Arachnothera)

    Get PDF
    This is the publisher's version, also available at http://www.bioone.org/doi/abs/10.1525/auk.2011.11019The phylogeny of spiderhunters (Nectariniidae: Arachnothera) was reconstructed by comparing mitochondrial and nuclear DNA sequences of all currently recognized species and with broad geographic sampling of two particularly variable species complexes, the Little Spiderhunter (Arachnothera longirostra) and the streaky spiderhunters (A. modesta and A. affinis). It appears to be a relatively old group, whose diversification was not caused by recent sea-level changes. However, the modern, highly sympatric distribution of the large species in the Sunda lowlands was probably a result of dispersal via recent land bridges. Within the highly variable A. longirostra group, there are substantially diverged taxa in the Philippines that should be considered different species. Within the A. affinis—modesta complex, there are three distinct species and a closely related fourth, which describe a clear allopatric distribution: A. affinis in Java, A. modesta in the rest of the Sunda lowlands (except Sabah), A. magna in the Malayan highlands and mainland Southeast Asia, and A. everetti in the Bornean highlands and Sabah. Depending on whether mitochondrial or nuclear genes were compared, monophyly of the genus was disrupted by a single outgroup sunbird (Hypogramma hypogrammicum) or by all outgroup sunbirds included in the study. The discrepancy between nuclear and mitochondrial results is probably a case of deep coalescence and will require additional markers for resolution

    DIY)biology and opportunities for HCI

    Get PDF
    ABSTRACT Over the past decade, a diverse community of biologists, artists, engineers and hobbyists has emerged to pursue biology projects outside of traditional laboratories. Though still in its nascent form, this DIYbio (Do It Yourself Biology) movement has given rise to a host of technical innovations and sharing mechanisms that enable hobbyists to experiment with organic materials. As these developments continue to expand science practice beyond professional settings and into hackspaces, art studios and private homes, HCI research is presented with a range of new opportunities and concerns. Our workshop will bring together a diverse group of designers and HCI researchers, as well as biologists, bioartists, and members of the DIYbio community to critically re-envision the role HCI might play at the intersection of biology, computation and DIY. This actionbased one-day workshop will engage directly with DIYbio initiatives in the UK to explore the materials, practices and challenges of 'garage biology'. Drawing on presentations from DIYbio participants who work with organic materials, hands-on biology activities (such as extracting DNA), and structured discussions, we hope to address themes such as: opportunities and implications for integrating organic materials into interactive systems; technologies that support and hinder public engagement with science; and HCI's role in the public discourse around bioethics and biosafety

    Live imaging of the immune response to heart injury in larval zebrafish reveals a multi-stage model of neutrophil and macrophage migration

    Get PDF
    Neutrophils and macrophages are crucial effectors and modulators of repair and regeneration following myocardial infarction, but they cannot be easily observed in vivo in mammalian models. Hence many studies have utilized larval zebrafish injury models to examine neutrophils and macrophages in their tissue of interest. However, to date the migratory patterns and ontogeny of these recruited cells is unknown. In this study, we address this need by comparing our larval zebrafish model of cardiac injury to the archetypal tail fin injury model. Our in vivo imaging allowed comprehensive mapping of neutrophil and macrophage migration from primary hematopoietic sites, to the wound. Early following injury there is an acute phase of neutrophil recruitment that is followed by sustained macrophage recruitment. Both cell types are initially recruited locally and subsequently from distal sites, primarily the caudal hematopoietic tissue (CHT). Once liberated from the CHT, some neutrophils and macrophages enter circulation, but most use abluminal vascular endothelium to crawl through the larva. In both injury models the innate immune response resolves by reverse migration, with very little apoptosis or efferocytosis of neutrophils. Furthermore, our in vivo imaging led to the finding of a novel wound responsive mpeg1+ neutrophil subset, highlighting previously unrecognized heterogeneity in neutrophils. Our study provides a detailed analysis of the modes of immune cell migration in larval zebrafish, paving the way for future studies examining tissue injury and inflammation

    Remission of human type 2 diabetes requires decrease in liver and pancreas fat content but is dependent upon capacity for beta cell recovery

    Get PDF
    The Diabetes Remission Clinical Trial reported return and persistence of non-diabetic blood glucose control in 46% of people with type 2 diabetes of up to 6 years duration. Detailed metabolic studies were performed on a subgroup (intervention, n = 64; control, n = 26). In the intervention group, liver fat content decreased (16.0% ± 1.3% to 3.1% ± 0.5%, p < 0.0001) immediately after weight loss. Similarly, plasma triglyceride and pancreas fat content decreased whether or not glucose control normalized. Recovery of first-phase insulin response (0.04[−0.05–0.32] to 0.11[0.0005–0.51] nmol/min/m2, p < 0.0001) defined those who returned to non-diabetic glucose control and this was durable at 12 months (0.11[0.005–0.81] nmol/min/m2, p = 0.0001). Responders were similar to non-responders at baseline but had shorter diabetes duration (2.7 ± 0.3 versus 3.8 ± 0.4 years; p = 0.02). This study demonstrates that β cell ability to recover long-term function persists after diagnosis, changing the previous paradigm of irreversible loss of β cell function in type 2 diabetes

    Time-Dependent Partition-Free Approach in Resonant Tunneling Systems

    Full text link
    An extended Keldysh formalism, well suited to properly take into account the initial correlations, is used in order to deal with the time-dependent current response of a resonant tunneling system. We use a \textit{partition-free} approach by Cini in which the whole system is in equilibrium before an external bias is switched on. No fictitious partitions are used. Besides the steady-state responses one can also calculate physical dynamical responses. In the noninteracting case we clarify under what circumstances a steady-state current develops and compare our result with the one obtained in the partitioned scheme. We prove a Theorem of asymptotic Equivalence between the two schemes for arbitrary time-dependent disturbances. We also show that the steady-state current is independent of the history of the external perturbation (Memory Loss Theorem). In the so called wide-band limit an analytic result for the time-dependent current is obtained. In the interacting case we propose an exact non-equilibrium Green function approach based on Time Dependent Density Functional Theory. The equations are no more difficult than an ordinary Mean Field treatment. We show how the scattering-state scheme by Lang follows from our formulation. An exact formula for the steady-state current of an arbitrary interacting resonant tunneling system is obtained. As an example the time-dependent current response is calculated in the Random Phase Approximation.Comment: final version, 18 pages, 9 figure
    corecore