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Abstract.—The phylogeny of spiderhunters (Nectariniidae: Arachnothera) was reconstructed by comparing mitochondrial and 

nuclear DNA sequences of all currently recognized species and with broad geographic sampling of two particularly variable species 

complexes, the Little Spiderhunter (Arachnothera longirostra) and the streaky spiderhunters (A. modesta and A. affinis). It appears 

to be a relatively old group, whose diversification was not caused by recent sea-level changes. However, the modern, highly sympatric 

distribution of the large species in the Sunda lowlands was probably a result of dispersal via recent land bridges. Within the highly 

variable A. longirostra group, there are substantially diverged taxa in the Philippines that should be considered different species. 

Within the A. affinis–modesta complex, there are three distinct species and a closely related fourth, which describe a clear allopatric 

distribution: A. affinis in Java, A. modesta in the rest of the Sunda lowlands (except Sabah), A. magna in the Malayan highlands and 

mainland Southeast Asia, and A. everetti in the Bornean highlands and Sabah. Depending on whether mitochondrial or nuclear genes 

were compared, monophyly of the genus was disrupted by a single outgroup sunbird (Hypogramma hypogrammicum) or by all outgroup 

sunbirds included in the study. The discrepancy between nuclear and mitochondrial results is probably a case of deep coalescence and 

will require additional markers for resolution. Received  January , accepted  August .

Key words: Arachnothera, Nectariniidae, phylogeny, Southeast Asia, spiderhunters.

Diversification d’un genre endémique de l’Asie du Sud-Est : les relations phylogénétiques d’Arachnothères 
(Nectariniidae : Arachnothera)

Résumé.—La phylogénie des Arachnothères (Nectariniidae : Arachnothera) a été construite en comparant les séquences d’ADN 

mitochondrial et nucléaire de toutes les espèces actuellement reconnues et avec un large échantillonnage géographique de deux complexes 

d’espèces particulièrement variables, soit Arachnothera longirostra ainsi qu’A. affinis–modesta. Il semble s’agir d’un groupe relativement 

ancien, dont la diversification n’a pas été causée par des changements récents du niveau de la mer. Cependant, la répartition moderne et 

hautement sympatrique de la grosse espèce dans les basses terres de Sunda était probablement le résultat de la dispersion via des ponts 

terrestres récents. Au sein du groupe hautement variable d’A. longirostra, il existe des taxons substantiellement différenciés aux Philippines 

qui devraient être considérés comme des espèces différentes. Pour le complexe A. affinis–modesta, il existe trois espèces distinctes et une 

quatrième étroitement apparentée, qui décrivent une répartition allopatrique claire : A. affinis à Java, A. modesta dans le reste des terres 

basses de Sunda (excepté Sabah), A. magna dans les hautes terres de Malaya et la partie continentale de l’Asie du Sud-Est, ainsi qu’A. everetti

dans les hautes terres de Bornéo et Sabah. Selon que les gènes mitochondriaux ou nucléaires étaient comparés, la monophylie du genre était 

perturbée par un seul hors-groupe d’oiseaux (Hypogramma hypogrammicum) ou par tous les hors-groupes d’oiseaux inclus dans l’étude. 

L’écart entre les résultats nucléaires et mitochondriaux constitue probablement un cas de coalescence profonde qui requiert des marqueurs 

supplémentaires pour être résolu. 
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The two major island groups of Southeast Asia, the Greater 

Sundas and the Philippines, have distinct biogeographic histories. 

The Greater Sundas are continental islands, but the Philippines 

are largely oceanic islands (Hall and Holloway ). With the ex-

ception of Palawan, which lies on the Sunda shelf, the Philippines 

were never connected to any other land mass and, thus, have been 
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Two of the spiderhunter species complexes comprise con-

siderable geographic variability and taxonomic uncertainty. The 

Little Spiderhunter (A. longirostra) is the most widespread spe-

cies in the genus, ranging from India to the Philippines. Molec-

ular phylogenetic comparisons have shown a deep genetic split 

between the population on Mindanao in the southern Philippines 

and populations in Sundaland and mainland Asia (Lohman et al. 

, Rahman et al. ). Rahman et al. () also found that 

the population on Palawan is distinct, even though Palawan is a 

Sundaic island adjacent to Borneo. Both of these studies included 

only mitochondrial DNA data and samples from single sites in the 

Philippines (Mindanao and Palawan). Here, we compare a larger 

number of A. longirostra populations using additional molecular 

markers to provide a broader biogeographic assessment of the spe-

cies complex. 

The complex consisting of A. affinis and A. modesta (here-

after “A. affinis–modesta complex”) comprises five subspecies 

and is a group of large-bodied and variably streaky spiderhunters 

that occurs throughout Sundaland. Classification of the complex 

has been the subject of considerable debate, and opinions regard-

ing the number, distribution, and rank of taxa vary substantially. 

Here, we attempt to resolve the uncertainty in their relationships 

and distribution by focusing primarily on the relationships of 

A. affinis everetti and A. modesta modesta on Borneo. Sharpe () 

described A. everetti from the vicinity of Mt. Kinabalu (Sabah, 

considerably more isolated than the Greater Sundas (Heaney ). 

Borneo, Sumatra, Java, their associated small islands, and the Ma-

lay Peninsula lie on the Sunda continental shelf. Much of the shelf 

is covered by a shallow sea that was exposed during periods of gla-

ciation and low sea level in the Pleistocene, and the resulting large 

land mass known as Sundaland encompassed the islands and main-

land of Southeast Asia (Whitmore ). Concomitant with low sea 

levels, colder climates and reduced oceanic effects caused montane 

forests in the region to descend to lower elevations (Flenley , 

Cannon et al. ), thus forming barriers to lowland populations 

and corridors among previously isolated higher montane popula-

tions. The colder climate and drier conditions also caused savanna 

and seasonal forests to replace rainforest in interior lowland areas 

of Sundaland, thus further separating rainforest taxa into allopatric 

populations (Heaney , Flenley , Meijaard , Bird et al. 

, Cannon et al. ). 

Recent molecular phylogenetic studies have begun to define 

distinct patterns of diversification within the Greater Sundas and 

Philippines that bear on potential connections and disconnections 

among populations (Gorog et al. , Campbell et al. , Jansa 

et al. , Ryan and Esa , Esselstyn and Oliveros , Es-

selstyn et al. ). For birds, most phylogenetic work in the region 

has focused on Borneo, which is a key link between the Philippines 

and the Greater Sundas (Diamond and Gilpin ). Moyle et al. 

() first documented a major genetic discontinuity within low-

land Borneo that made populations of the White-crowned Forktail 

(Enicurus leschenaulti), a saxicoline thrush (Sangster et al. ), 

in Sarawak (northwest Borneo) more closely related to popula-

tions in Sumatra and the Malay Peninsula than to populations in 

Sabah (northeast Borneo). Subsequent work on additional lowland 

bird species has expanded the list of taxa that exhibit this pattern 

(Sheldon et al. b; Lim et al. , ). Studies of widespread 

Southeast Asian avian taxa have also found that Philippine popula-

tions tend to be more distinct genetically from their Sundaic rela-

tives than previously thought. As such, they merit consideration as 

endemic Philippine species rather than simply polymorphic exten-

sions of continental Southeast Asian species (Sheldon et al. b; 

Lim et al. , ; Lohman et al. ; Oliveros and Moyle ). 

The genus Arachnothera, the spiderhunters, presents an excel-

lent opportunity to examine these patterns further and investigate 

the processes responsible for avian diversification in Sundaland and 

the Philippines. Spiderhunters are members of the sunbird family 

(Nectariniidae) and include widespread as well as island endemic 

species across southern Asia, the Greater Sunda Islands, and portions 

of the Philippines (Fig. ). They reach their greatest diversity on Bor-

neo. Of the  currently recognized species (Dickinson ), seven 

are confined to Sundaland, one has a Sundaic as well as an Asian 

mainland population (A. magna), one ranges from mainland South-

east Asia across Sundaland and into the oceanic Philippines (A. lon-

girostra), and one is confined to the oceanic Philippines (A. clarae). 

Morphological diversity among species is reflected by the number of 

subspecies (Dickinson ), from none (A. juliae, A. crassirostris,

A. flavigaster) to  (A. longirostra). In morphology, spiderhunters are 

larger and heavier-bodied than other sunbirds, and like female sun-

birds they usually have drab greenish, yellow, or gray plumage. One 

exception is Whitehead’s Spiderhunter (A. juliae), an endemic of Bor-

nean mountains that is dark brown with white streaks. All feed on 

nectar and small arthropods (not necessarily spiders). 

FIG. 1. Map of spiderhunter (Arachnothera) distributions in Southeast 
Asia from Cheke and Mann (2008) and Kennedy et al. (2000). The west-
ern extensions of Arachnothera longirostra in India and A. magna in the 
eastern Himalayas are not shown. The distribution of A. modesta extends 
farther north than shown, into far southwest Myanmar and Thailand. The 
inset provides a more precise estimate of the distribution of A. affinis and 
A. modesta on Borneo (Sheldon et al. 2001).
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Malaysian north Borneo) and considered it an endemic species 

because of its large size and heavy streaking. Over the next cen-

tury, this taxon has variably been treated as a subspecies of an ex-

panded A. affinis that also included all populations of A. modesta

(e.g., Chasen ; Smythies , ), as a Bornean endemic 

species (Stresemann , Rand , Sibley and Monroe , 

MacKinnon and Phillipps , Inskipp et al. ), or as a sub-

species of a more narrowly circumscribed A. affinis that excluded 

A. modesta (lowland Borneo, Sumatra, and mainland Asia) (Da-

vison , Dickinson , Mann ). The situation is further 

complicated because A. modesta appears not to occur in Sabah 

and A. affinis occupies both the lowlands and mountains in that 

part of Borneo (Chasen ; Sheldon et al. , a, b; Haines 

). Nevertheless, birdwatchers frequently report the two spe-

cies in sympatry in Sabah, and recent revisions continue to list 

two species in north Borneo (Cheke and Mann , Mann ).

We compared DNA sequences of nuclear and mitochondrial 

genes from all described species of Arachnothera, including a 

broad geographic sample of the two widespread and variable spe-

cies complexes (A. longirostra and A. affinis–modesta). Our main 

goals were to evaluate the taxonomic status of several populations 

and define species limits that accurately describe diversity in the 

genus, and then apply patterns evident in the phylogeny to shed 

light on the history of diversification of the spiderhunters and 

other similarly distributed groups of the Greater Sunda and Phil-

ippine islands. 

METHODS

Samples of spiderhunters were collected by us and others across 

southeast and southern Asia (Appendix). Sampling was most 

dense in Borneo and the Philippines to assess populations in the 

A. longirostra and A. affinis–modesta species complexes. The in-

group consisted of  individuals representing all species in the 

genus. Most samples were derived from modern specimens col-

lected in the wild. However, ancient DNA of A. juliae and two pop-

ulations in the A. affinis–modesta complex (A. affinis from Java 

and A. modesta from Sumatra) was extracted from museum study 

skins because no fresh samples were available. As outgroups, we 

included a selection of other sunbird and flowerpecker (Dicaeidae) 

genera. A leafbird (Chloropsis hardwickii) and a dipper (Cinclus 

pallasii) served as more distant outgroups to root trees. 

Total genomic DNA from modern samples was extracted 

from frozen or alcohol-preserved muscle tissue using standard 

Qiagen extraction protocols (Qiagen, Valencia, California). Mo-

lecular markers consisted of sequences of the mitochondrial 

genes nicotinamide adenine dinucleotide dehydrogenase sub-

units  (ND; , base pairs [bp]) and  (ND;  bp), and 

the fifth nuclear intron of the transforming growth factor, β

(TGFβ;  bp aligned). These were amplified using the prim-

ers L–H (Hackett , Johnson and Sorenson ), 

L–H (Chesser ), and TGF and TGF (Primmer et 

al. ), respectively. Polymerase chain reaction [PCR] products 

were purified with ExoSAP-IT (US; Amersham Biosciences, 

Piscataway, New Jersey) or Qiagen Qiaquick PCR purification kits. 

Purified PCR products were then sequenced with ABI Prism Big-

Dye Terminator chemistry, version . (Applied Biosystems, Fos-

ter City, California), using the same primers used for PCR. Cycle 

sequencing products were purified through Sephadex or precip-

itation in % ethanol and then analyzed on an ABI  Prism 

xl Genetic Analyzer (Applied Biosystems). SEQUENCHER, 

version . (Gene Codes, Ann Arbor, Michigan), was used to rec-

oncile complementary gene sequences and align sequences across 

taxa. 

Ancient DNA was extracted in a clean lab dedicated to his-

torical samples with strict protocols to prevent contamination. 

Historical samples were extracted with Qiagen kits using carrier 

RNA and multiple negative controls. In addition, DNA was eluted 

twice with  μL of the provided buffer and both eluates were 

combined and concentrated to ~ μL to increase DNA yield. 

Ancient DNA was amplified and, if necessary, reamplified with 

PCR product. The PCR product was verified on agarose gels and, 

if present, samples were cleaned with the Qiagen PCR Purifica-

tion kit, cycle sequenced, and cleaned with Sephadex prior to se-

quencing on an ABI  platform. Ancient DNA was sequenced 

at ND using the published primer sequences above as well as a 

series of short, overlapping primer pairs that were designed using 

a degenerate consensus sequence obtained from contemporary 

Arachnothera sequences. These short, degenerate internal primer 

pairs amplified consecutive – bp sections of the ND gene 

(see Table ) and were also used in various combinations to am-

plify larger fragments. Sequence coverage for historical samples 

was approximately × and sequences within an individual were 

TABLE 1. Sequences of newly designed primers for amplify-
ing and sequencing ND2 from museum study-skin samples.

Primer name 5’ to 3’ sequence

ND2Int1F AACCCCMTAGCAAAASYA
ND2Int1R TTRATTTCTAGKCCGGYT
ND2Int2F ACWACYATYACAGTAWCRAGCA
ND2Int2R GRAAGTATTTRGTTGCGG
ND2Int3F CCAYCCVCGAGCYATTGA
ND2Int3R GRTGGGTTAGTTGGGTRA
ND2Int4F AGCATRACYAAYGCATGA
ND2Int4R TKACYGTGGATAGAAGRAG
ND2Int5F CTAGTMCCATTCCAYTTCT
ND2Int5R TGGGGTTKARTGATKGKG
ND2Int6F ATTCCCHCCWCTCACAYT
ND2Int6R GCKAGGATTTTTCGGATT
ND2Int7F TRGGMGGATGAATAGGAYT
ND2Int7R ATKAGYGAGTAYAGGTAGAAG
ND2Int8F CTCMTACRACCCYAAACT
ND2Int8R TYGCRTTTADRGATGGRRYT
ND2Int9F AMCCACMYTAATAACWGCA
ND2Int9R TAGGGAGAGYAGGGTTAG
ND2Int10F TACTAACCCTRCTCTCCC
ND2Int10R TTGYTTRGTYAGTTCYTGKAYG
ND2Int11F ACAGGATTCMTKCCYAAA
ND2Int11R GGCGKAGGTAGAAGAAYA
ND2Int12F AATAKCCCTACTATCYCTAC
ND2Int12R GRYWGGYTTRTTAGTRYG
ND2Int13F CCCYCCYCAYACMACAAA
ND2Int13R TGKRTADATKAKKGGDGCVRT
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verified to ensure that identical sequences were obtained for all 

combinations of published and internal primers.

Phylogenetic analysis was conducted using maximum like-

lihood (ML) implemented in the software RAXML, version .. 

(Stamatakis et al. ). Sequences were divided into four parti-

tions (three mitochondrial codon positions and the intron) and 

analyzed using the GTRGAMMA model of evolution. Clade sup-

port was evaluated with , fast bootstrap pseudoreplicates 

(Stamatakis et al. ). We also conducted Bayesian analysis 

(BA) using Markov chain Monte Carlo (MCMC) tree searches 

in MRBAYES, version .. (Huelsenbeck and Ronquist , 

Ronquist and Huelsenbeck ). MtDNA sequences were par-

titioned by codon positions, and the nuclear intron was treated 

as a separate partition. MRMODELTEST, version . (Nylander 

), was used to determine the substitution model based on 

Akaike’s information criterion. Two independent runs of  mil-

lion generations were conducted with default chain heating 

conditions, sampling every , generations. Stationarity was 

evaluated with the program AWTY (Nylander et al. ) by 

plotting bipartition frequencies of each run in nonoverlapping 

bins of , generations (“Slide”) and comparing the fre-

quency of bipartitions between the two runs with various burn-

in proportions removed (“Compare”). Generations before the 

runs had stabilized and converged on similar posterior proba-

bilities for clades were discarded as burn-in. The remaining trees 

were retained and summarized in a majority-rule consensus 

tree. Bayesian analyses were also conducted on the mitochon-

drial and nuclear data separately to examine congruence in phy-

logenetic signal between the two markers.

We examined the influence of missing data by plotting taxon 

stability against the proportion of missing data for each individual 

in MESQUITE (Maddison and Maddison ). This test has been 

useful in identifying taxa that cannot be placed with confidence 

because of missing data. For sample trees, we used bootstrap rep-

licates from the maximum likelihood analysis. 

RESULTS

Sequence attributes.—The DNA sequence matrix contained  

ingroup individuals from  species and , bases (, ND, 

 ND,  TGFβ), of which  (.%) were parsimony infor-

mative ( ND,  ND,  TGFβ). Sequences derived from 

museum study skins were limited to ND. All newly produced 

sequences are available from the GenBank database (accession 

numbers JF–JF). Aligned ND and ND sequences 

appeared to be of mitochondrial origin rather than nuclear copies, 

they contained no stop codons, overlapping fragments contained 

no conflicts, base composition was relatively homogeneous across 

taxa, codon positions contained expected relative divergences 

(>>), and resulting relationships contained no highly suspect 

arrangements. Base composition in the mitochondrial data was 

biased, with an excess of adenine and cytosine (A = ., C = 

., G = ., T = .), but consistent with compositional pat-

terns found in these genes in other bird groups (e.g., Sheldon et al. 

, Moyle et al. ). Base composition in the intron data was 

more homogeneous (A = ., C = ., G = ., T = .). 

Models of evolution chosen for all likelihood analyses accounted 

for base composition bias. A chi-square test for homogeneity of 

base frequencies across taxa detected no significant differences 

for each gene (ND, P = .; ND, P = .; TGFβ, P = .).

Aligned TGFβ sequences contained several inferred in-

sertions or deletions (indels), but alignment of the sequences 

was fairly straightforward for two reasons. First, indels were 

infrequent enough that they generally did not overlap, allow-

ing homologous indels to be identified. Second, the nucleotide 

sequences themselves were not highly diverged, which simpli-

fied alignment and default placement of indels. Shared indels in-

cluded a -bp deletion in two individuals of both A. chrysogenys

and A. clarae; a -bp deletion in two individuals of A. longirostra

( and ) and Nectarinia olivacea; a -bp insertion in the 

three individuals of Hypogramma; and a -bp deletion shared by 

all individuals of A. longirostra, A. rosbusta, A. crassirostris, An-

threptes singalensis, Aethopyga christinae, Nectarinia olivacea,

N. sperata, and Anthreptes rectirostris.

Phylogenetic results.—The taxon stability test revealed that 

samples with missing data were placed with the same, or more, 

consistency than samples with full data. The nine most unsta-

ble taxa were the nine samples of Arachnothera everetti. These 

samples had very similar sequences, and apparently changed 

relationships among bootstrap replicates, but were always re-

covered as a clade. Bayesian and ML analysis produced differ-

ent topologies but they did not conflict at any well-supported 

nodes (>% boostrap support and . posterior probability). 

However, analysis of each marker individually revealed conflict-

ing phylogenetic signal between the nuclear and mitochondrial 

data. The description of relationships that follows is based on the 

ML topology of the combined data (Fig. ). Differences in trees 

between the markers are shown in Figure  and are described 

following the discussion of general relationships of the spider-

hunters. Combined data analysis recovered the Purple-naped 

Sunbird (Hypogramma hypogrammicum) inside Arachnothera,

rendering the genus paraphyletic. Support for the node that in-

cludes Hypogramma within Arachnothera was fairly strong, 

with a Bayesian posterior probability of . and ML boostrap-

ping support at %. This node unites Hypogramma with clade 

A of the spiderhunters (Fig. ). Clade A split into  subclades, 

one of which included the Bornean endemic A. juliae sister to 

a clade consisting of A. chrysogenys and the Philippine endemic 

A. clarae. All relationships within this subclade received strong 

support. Within the other A subclade, A. flavigaster branched 

basally, followed by A. magna. The A. affinis–modesta species 

complex was strongly supported as sister to A. magna and con-

tained substantial geographic structure. It consisted of three lin-

eages comprising individuals from Java, Sumatra–Sarawak, and 

the Bornean mountains and northeast Bornean lowlands. The 

Javan individual was sister to the other two clades with strong 

ML bootstrap support (%) and marginally significant poste-

rior probability (.).

The second clade of spiderhunters (Fig. ; clade B) contains 

just three species. Strong nodal support united A. robusta and

A. crassirostris as sister taxa, with A. longirostra as sister to both of 

them. Arachnothera longirostra divided into three distinct clades 

corresponding to samples from Palawan, the southern Philip-

pines (Mindanao, Dinagat, and Bohol), and all non-Philippine 

areas included in the study. The southern Philippine clade was 

separated by a deep branch from the Palawan population and its 



OCTOBER 2011 — SPIDERHUNTER PHYLOGENY — 781

FIG. 2. Maximum-likelihood estimate of the spiderhunter phylogeny based on combined mitochondrial and nuclear sequences. Branch support num-
bers are bootstrap proportions/Bayesian posterior probability. Asterisks indicate 100% bootstrap and 1.0 Bayesian support.
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well-defined sister, the non-Philippine populations. Within the 

latter, individuals from Borneo, Malaya, and Vietnam sorted into 

well-supported clades, although distinguished by shallow genetic 

divergences. 

The main discrepancy between the nuclear and mitochon-

drial data concerned the placement of sunbirds other than Hy-

pogramma (i.e., Anthreptes singalensis, A. rectirostris, Nectarinia 

sperata, N. olivacea, and Aethopyga christinae). Mitochondrial 

data placed them solidly outside of Arachnothera, as expected. By 

contrast, the nuclear intron data placed them sister to clade B of 

Arachnothera with strong support. This relationship was further 

supported by a -bp deletion (Fig. ). The conflict in phylogenetic 

signals likely contributed to the low support for Arachnothera (in-

cluding Hypogramma) in the combined analysis. Support for Hy-

pogramma within Arachnothera derived mostly from the mtDNA 

data, which placed it clearly as sister to clade A (Fig. ). The nuclear 

data placed Hypogramma in a polytomy with four other clades 

(Fig. ). 

Uncorrected proportional genetic distances (p distances) be-

tween samples can be used as a rough heuristic for divergence be-

tween lineages. For the ND data, A. longirostra individuals from 

Borneo were .% diverged from the peninsular Malaysian indi-

vidual, .% diverged from the Vietnam birds, .–.% from the 

Palawan birds, and about % from the southern Philippine clade. 

Individuals of A. affinis–modesta from the Bornean mountains 

and northeast lowlands were .% diverged from Sumatran and 

Sarawak lowland birds, and .% diverged from the Javan bird. 

The Sumatran individual was only .–.% diverged from mul-

tiple individuals from the Sarawak lowlands. The maximum diver-

gence across five individuals of A. magna was almost %, between 

a bird from Vietnam () and samples from China, Myanmar, 

and Vietnam. Curiously, another individual () collected 

from the same site on the same trip to Vietnam (P. Sweet pers. 

comm.) grouped with the samples from Myanmar and China. The 

cause of such a high divergence within this Vietnam population 

is unknown. 

DISCUSSION

Higher-level phylogeny.—Analysis of the nuclear and mitochon-

drial sequence data produced conflicting hypotheses about the 

relationships of Arachnothera. Although this conflict precluded 

reliable inference of some of the deeper relationships among ma-

jor spiderhunter clades, most nodes among species received strong 

support from both markers, allowing us to discuss several aspects 

of spiderhunter taxonomy and hypotheses of avian diversification 

in the Sunda region.

Spiderhunters do not appear to be monophyletic. The 

Purple-naped Sunbird is nested inside Arachnothera and is the 

sister of one of the two main spiderhunter clades. Support for 

the novel phylogenetic placement of Hypogramma derives mostly 

from the mtDNA data; the intron places it in a polytomy with sev-

eral other lineages (Fig. ). This result is unexpected, given that 

we can find no mention of possible inclusion of Hypogramma

within spiderhunters in the literature. In the only other molec-

ular phylogenetic study that included both genera, Sibley and 

Ahlquist’s () DNA–DNA hybridization comparisons recov-

ered Arachnothera and Hypogramma in a polytomy with the rest 

of the Nectariniidae. The nuclear data indicate that Arachnothera

monophyly is further disrupted by the other sunbirds we included 

in the study as outgoups. Intron comparisons place the five sun-

bird species in a group that is sister to clade B of Arachnothera

with high support (Fig. ). The mtDNA data do not corroborate 

this relationship, but instead place the five other sunbirds outside 

of Arachnothera–Hypogramma. The latter arrangement seems 

most likely, given the many differences between Arachnothera–

Hypogramma and other sunbirds (see below). The incongruence 

between mitochondrial and nuclear genes may be a case of deep 

coalescence and gene tree–species tree discordance. More in-

dependent markers will need to be applied to this problem to 

resolve it. 

A close relationship, or monophyly, of Hypogramma and 

Arachnothera is consistent with their distribution, morphology, 

and behavior. Hypogramma occurs in the same areas as Arach-

nothera (i.e., throughout much of Southeast Asia and the Greater 

Sundas, except Java). Both sexes of Hypogramma and several spe-

cies of spiderhunters have varying degrees of underpart streaking. 

Such streaking occurs only in females of a few other sunbird spe-

cies. Hypogramma’s only overt plumage difference from spider-

hunters is the small iridescent purple patch on the nape and rump 

of the male. Hypogramma constructs a purse-shaped nest typical 

of sunbirds, but it is suspended from the underside of a large leaf as 

in spiderhunters (Wells , Cheke and Mann ). In spider-

hunters, both parents incubate eggs, which is unusual in sunbirds. 

Hypogramma’s incubation behavior is unknown. Hypogramma is 

smaller than several species of spiderhunters but is roughly the 

same size as A. longirostra and A. crassirostris. If this phylogenetic 

result is corroborated, we suggest that Hypogramma be subsumed 

within Arachnothera.

Higher-level relationships of spiderhunters are well resolved, 

but they do not indicate clear geographic or diversification pat-

terns, except in the case of A. affinis, A. modesta, and A. magna.

There are three groups of relatively closely related spiderhunter 

species: () A. affinis, A. modesta, A. magna, and A. flavigaster (Fig. 

; clade A); () A. clarae, A. chrysogenys, and A. juliae (Fig. ; clade 

A); and () A. crassirostris, A. robusta, and A. longirostra (Fig. ; 

clade B). The first consists of three medium-sized and one large-

sized species. The three medium-sized species—A. affinis, A. mod-

esta, and A. magna—are all streaked, and they replace one another 

geographically. Where they co-occur, A. modesta inhabits the 

lowlands and A. magna (Malay Peninsula) or A. affinis (Borneo) 

occupies the highlands (but see below for more details on the tax-

onomy and distribution of A. affinis). This pattern suggests a spe-

cies group that subdivided and then came into secondary contact. 

The second group consists of three medium-sized species. One of 

them is widespread in Sundaland (A. chrysogenys) and two are dis-

tributionally restricted endemics, A. clarae in the Philippines and 

A. juliae in the mountains of Borneo. This distribution is highly 

reminiscent of a clade of trogons in the genus Harpactes (Hos-

ner et al. ), described below. The third group contains the two 

smallest spiderhunters, A. longirostra and A. crassirostris, as well 

as the somewhat larger but morphologically similar A. robusta.

Taxonomy of species groups.—Both genetic markers indicated 

deep divergences within A. longirostra that distinguished the two 

endemic Philippine taxa from all other Little Spiderhunter popula-

tions included in the study. The two Philippine taxa are the Palawan 
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subspecies dilutior and the southern Philippine subspecies flam-

mifera (and presumably randi from Basilan Island, which we did 

not sample). Their genetic distinctiveness was suggested earlier by 

Rahman et al. () and Lohman et al. (), and for this reason 

we investigated them with expanded sampling. In addition to their 

molecular divergence, dilutior and flammifera are also morphologi-

cally distinct (Table ). Subspecies dilutior has a yellow eye-ring that 

fades in museum specimens and is not depicted in field guides, al-

though it is noted in the text by Kennedy et al. (). It is drabber 

than populations in neighboring Borneo, having almost no yellow 

in its underparts. Subspecies flammifera is small-bodied, and its 

yellow plumage is restricted to the lower abdomen, flanks, and vent. 

Both of the Philippine taxa lack light lores and eyebrows, typical of 

A. longirostra in Sundaland and continental Southeast Asia. As a re-

sult of molecular and morphological differences, the endemic Phil-

ippine little spiderhunters should be treated as two distinct species: 

A. dilutior Sharpe, , on Palawan; and A. flammifera Tweeddale, 

, on the southern Philippine islands. Within Borneo, no break 

appears between the birds of Sarawak and Sabah, as occurs in many 

other species (Moyle et al. , Lim et al. ). Panmixia may be 

attributed to the high vagility of spiderhunters, which search widely 

for food and live in a variety of habitats.

Current taxonomy inaccurately reflects relationships within 

the A. affinis species complex. Arachnothera affinis, which includes 

A. a. affinis of Java and A. a. everetti of montane and northeast low-

land Borneo, is not a natural group and should not be maintained. 

Although we predicted that these two taxa would be closely related 

because other montane Bornean bird species appear to have close 

Javan relatives (Sheldon et al. a), this prediction proved to be 

wrong. Outside of Borneo, A. a. affinis and the widespread lowland 

A. modesta have at times been considered conspecific (Chasen , 

Rand ), but lumping those taxa would also create a paraphy-

letic group. Instead, our comparisons defined three lineages, each 

of which should be considered distinct species. Arachnothera affinis

should be split into A. affinis from Java and Bali and A. everetti from 

montane and northeast lowland Borneo. The constitution of A. mod-

esta (Davison ) remains largely unchanged. The lowland individ-

uals that we compared from Sarawak in western Borneo were most 

similar to those from Sumatra, which suggests a strong Sundaic con-

nection (Lim et al. ). Finally, there is no evidence that A. modesta

occurs in Sabah. The seven individual streaky spiderhunters that we 

compared from Sabah, although derived from sites spanning –

, m in elevation, were all closely related to an individual from 

montane Sarawak rather than individuals from the lowlands of Sar-

awak or Sumatra. Future records from Sabah should be considered 

A. everetti unless evidence of A. modesta is thoroughly documented.

Diversification in the Sunda region.—Species of spiderhunters 

differ substantially at mitochondrial loci, and several have largely 

overlapping distributions (Fig. ). These factors suggest that the 

forces behind the diversification of major groups of spiderhunters 

(and perhaps Hypogramma) are ancient and not the result of recent 

geological and environmental events such as the eustatic sea-level 

changes caused by Pleistocene glaciation. The widespread sympatry 

of most spiderhunter species in Sundaland (Fig. ) suggests that, 

once diverged, these highly vagile birds took advantage of recent 

land bridges to move back and forth among islands (unfortunately, 

we did not have samples to examine genetic distances among popu-

lations on different Sunda islands). Another interesting aspect of spi-

derhunter distribution is that Sumatra lacks a montane specialist; 

this suggests that the montane taxa (A. everetti and A. magna) did 

not make it that far south or west in Sundaland or went extinct there. 

With respect to distribution and genetic divergence, the spi-

derhunters strongly resemble the trogons (Harpactes), another 

Asian group for which we have molecular phylogenetic data. 

Harpactes species have much the same distribution and their ma-

jor clades are separated by long stem lineages that lead to several 

broadly sympatric species (Hosner et al. ). One trogon pattern 

is particularly reminiscent of the spiderhunters: a clade of three 

taxa consisting of one broadly distributed species (A. chrysogenys;

H. kasumba), one Bornean mountain endemic (A. juliae; H. white-

headi), and one Philippine endemic (A. clarae; H. ardens). 

At the population level, we are beginning to see several vari-

ations on a common theme in Sundaland, in which populations 

in the lowlands of northeast Borneo are genetically (and some-

times morphologically) distinct from those in the lowlands else-

where in Borneo (Moyle et al. ; Sheldon et al. b; Lim et al. 

, ). These observations add to a growing body of evidence 

of a major biogeographic break within the island corresponding 

roughly with the border of Sabah (Gorog et al. , Ryan and 

Esa ). The northern portion of Borneo’s central highlands 

runs along the border between Sabah and Sarawak. This mon-

tane barrier, along with the isolating effects of a number of rivers 

TABLE 2. Proposed species-level taxa of spiderhunters (genus Arachnothera)
with descriptions and distributional information.

Latin name Descriptiona Distribution

A. dilutior Yellow eye-ring, drabber under-
parts than A. longirostra, no 
light eyebrow or lores as in 
A. longirostra

Palawan

A. flammifera Small size, yellow restricted to 
lower abdomen, flanks, and 
vent; lacks light eyebrows and 
lores of A. longirostra

Southern Philippines 
(Bohol, Dinagat, Leyte, 
Mindanao, Samar, and 
probably Basilan)

A. everetti Large-bodied, with dark gray-
brown streaking from chin to 
abdomen and flanks; streaks 
more diffuse on abdomen; 
dull yellow wash to abdomen, 
marked sexual size dimor-
phism; wing (male) 87–96 mm 
(mean 91.2, n = 14), (female) 
78–85 mm (mean 81.4, n = 9)

Montane Borneo and 
northeast lowland 
Borneo

A. affinis Similar to A. everetti, but with 
rusty breast streaks; wing 
(male) 76–94 mm (mean 84.9, 
n = 8), (female) 80–85 mm 
(mean 82.5, n = 4)

Java and Bali

A. modesta Much smaller body, shorter bill, 
and more lightly streaked 
than A. everetti; wing (male) 
77–82 mm (79.5, n = 2)

Extreme southern 
Myanmar and 
Thailand, Peninsular 
Malaysia, Sumatra, 
lowland Borneo except 
in the northeast

aMeasurements of A. everetti and A. affinis are from Davison (1999). Measurement 
of A. modesta is of two Louisiana State University specimens from Mt. Pueh, western 
Sarawak.
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that flow from the northern face of the central highland into the 

South China sea, could present a formidable dispersal impedi-

ment to lowland taxa. Interestingly, even when Sundaland was 

maximally exposed during glacial periods, little additional land 

connected Sabah to the rest of Borneo because of the deep wa-

ters around Sabah. Such insularity could further promote the dif-

ferentiation of Sabah populations. Moyle et al. () discovered 

the pattern of two lowland populations in the White-crowned 

Forktail but also found a third, more distant taxon (E. borneensis)

in the mountains of Borneo. Moreover, the montane E. borneensis

did not exhibit a biogeographic break corresponding to the low-

land break. In the present study, we found a variation on this pat-

tern. As in the forktails, the montane A. everetti is distinct from 

the lowland A. modesta, but there is no lowland population of A. 

modesta in Sabah; it is replaced there by A. everetti, which inhabits 

both montane and lowland areas. Whether the different genetic 

patterns among these species groups (three vs. two distinct Bor-

nean lineages) indicate two distinct historical causes of diversi-

fication, or rather variation in the outcome of a single historical 

driver, is uncertain. Quite possibly, A. everetti was isolated in a 

northern Bornean rainforest refuge, as apparently were other low-

land Sabahan birds (Lim et al. , ). It maintained that low-

land distribution in the absence of A. modesta and also expanded 

southward through the mountains, where A. modesta was absent. 

Alternatively, A. everetti was always a montane species that was 

able to expand into the lowlands of Sabah because of the absence 

of A. modesta, but not into the lowlands elsewhere in Borneo 

where A. modesta occurred. It is also possible that A. everetti once 

inhabited a broad elevational range across all of Borneo but has 

recently been displaced from the western lowlands by A. modesta.
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APPENDIX. Samples included in the study. Sources: Louisiana State University Museum of Natural Science (LSUMNS), University of Kansas Natural His-
tory Museum (KUNHM), American Museum of Natural History (AMNH), Cincinnati Museum Center (CMC), Academy of Natural Sciences Philadelphia 
(ANSP), and Western Foundation of Vertebrate Zoology (WFVZ). Asterisks indicate samples extracted from museum study skins, for which only ND2 
was sequenced.

Species Locality Elevation Sample number Collector–preparator

Arachnothera longirostra Crocker Range HQ, Sabah, Malaysia 1,000 m LSUMNS B36306 R. G. Moyle
Serinsim, Sabah, Malaysia 200 m LSMMNS B46985 R. G. Moyle
Bukit Hanta FR, Johor, Malaysia 80 m LSUMNS B52603 H. C. Lim
Puerto Princesa, Palawan, Philippines 200 m KUNHM 12621 C. H. Oliveros
Dinagat Island, Philippines 200 m KUNHM 14039 R. Fernandez
Zamboanga, Mindanao, Philippines 80 m KUNHM 18123 C. H. Oliveros
Puerto Princesa, Palawan, Philippines 200 m KUNHM 12706 C. H. Oliveros
Mantalingajan Range, Palawan, Philippines 850 m KUNHM 12773 R. G. Moyle
Dinagat Island, Philippines 200 m KUNHM 14174 R. Fernandez
Bohol Island, Philippines 350 m KUNHM 20950 C. H. Oliveros
Mt. Magdiwata, Mindanao, Philippines 500 m KUNHM 19010 C. H. Oliveros
Penampang, Sabah, Malaysia 375 m KUNHM 17706 R. G. Moyle
Ulu Kimanis, Sabah, Malaysia 550 m KUNHM 17768 R. G. Moyle
Bintulu, Sarawak, Malaysia 150 m KUNHM 12343 R. G. Moyle
Quang Nam, Vietnam 200 m AMNH DOT 10813 P. R. Sweet
Quang Nam, Vietnam 200 m AMNH DOT 12304 R. T. Chesser

A. crassirostris Kg. Pueh, Sarawak, Malaysia 60 m KUNHM 24436 R. G. Moyle
A. robusta Mt. Trus Madi, Sabah, Malaysia 1,400 m LSUMNS B36483 R. G. Moyle

Mt. Lucia, Sabah, Malaysia 900 m LSUMNS B51150 B. D. Marks
A. flavigaster Ulu Kimanis, Sabah, Malaysia 550 m LSUMNS B61604 F. H. Sheldon

Ulu Kimanis, Sabah, Malaysia 550 m KUNHM 17772 R. G. Moyle
A. chrysogenys Serinsim, Sabah, Malaysia 180 m LSUMNS B47054 R. G. Moyle

Ulu Kimanis, Sabah, Malaysia 550 m LSUMNS B61603 F. H. Sheldon
Ulu Kimanis, Sabah, Malaysia 550 m KUNHM 17772 R. G. Moyle

A. clarae Mindanao, Philippines CMC B2049 R. S. Kennedy
Mindanao, Philippines CMC B36996 R. S. Kennedy
Aurora, Luzon, Philippines 525 m KUNHM 19622 C. H. Oliveros

A. modesta Kuching NP, Sarawak, Malaysia Sea level LSUMNS B52174 H. C. Lim
Kg. Pueh, Sarawak, Malaysia 50 m LSUMNS B58549 F. H. Sheldon
Kg. Pueh, Sarawak, Malaysia 50 m LSUMNS B58584 F. H. Sheldon
Kg. Pueh, Sarawak, Malaysia 50 m LSUMNS B58637 F. H. Sheldon
Meloewak, Sumatra ANSP 140139* Vanderbilt Expedition

A. affinis Palabaeau Ratoe, West Java ANSP 56776*
A. everetti Tawau Hills, Sabah, Malaysia 300 m LSUMNS B36402 R. G. Moyle

Crocker Range HQ, Sabah, Malaysia 1,000 m LSUMNS B36310 R. G. Moyle
Serinsim, Sabah, Malaysia 180 m LSUMNS B47062 F. H. Sheldon
Mt. Lucia, Sabah, Malaysia 1,000 m LSUMNS B51142 R. G. Moyle
Mt. Kinabalu, Sabah, Malaysia 2,100 m KUNHM 17801 R. G. Moyle
Bario, Kelabit Plateau, Sarawak, Malaysia 1,690 m AMNH 648559* T. Harrisson
Ulu Kimanis, Sabah, Malaysia 550 m KUNHM 17761 R. G. Moyle
Temburong, Brunei LSUMZ 155705* A. Chapman 
Crocker Range HQ, Sabah, Malaysia 1,000 m LSUMNS B36309 R. G. Moyle

A. magna Guanxi, China 500 m KUNHM 10401 T. J. Davis
Guanxi, China 978 m KUNHM 10194 A. Nyari
Kyi Tan, Myanmar KUNHM 15259 F. Steinheimer
Quang Nam, Vietnam 1,450 m AMNH DOT 12277 R. T. Chesser
Quang Nam, Vietnam 1,450 m AMNH DOT 12295 R. T. Chesser

A. juliae Moyog, Sabah, Malaysia 1,470 m WFVZ 41711* D. Foote

(continued)
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Species Locality Elevation Sample number Collector–preparator

Outgroups
Anthreptes singalensis Klias Forest Reserve, Sabah, Malaysia 20 m LSUMNS B47156 B. D. Marks
A. rectirostris Equatorial Guinea KUNHM 8499 L. A. Sánchez-González
Aethopyga christinae Guanxi, China 500 m KUNHM 10276 M. B. Robbins
Nectarinia sperata Ulu Tungud FR, Sabah, Malaysia 100 m LSUMNS B57444 R. G. Moyle
N. olivacea Cameroon 650 m LSUMNS B27073 D. Dittmann
Hypogramma hypogrammicum Tawau Hills, Sabah, Malaysia 150 m LSUMNS B36404 R. G. Moyle
H. hypogrammicum Tawau Hills, Sabah, Malaysia 150 m LSUMNS B36422 R. G. Moyle
H. hypogrammicum Tawau Hills, Sabah, Malaysia 150 m LSUMNS B38549 R. G. Moyle
Dicaeum monticolum Meligan Range, Sabah, Malaysia 1,600 m KUNHM 17745 R. G. Moyle
Prionochilus maculatus Bintulu, Sarawak, Malaysia 150 m KUNHM 12405 R. G. Moyle
Chloropsis hardwickei Guanxi, China 978 m KUNHM 10019 A. T. Peterson–A. Nyari
Cinclus pallasii China KUNHM 11241 B. W. Benz

APPENDIX. Continued.


