172 research outputs found

    Recolonizing carnivores: Is cougar predation behaviorally mediated by bears?

    Get PDF
    Conservation and management efforts have resulted in population increases and range expansions for some apex predators, potentially changing trophic cascades and foraging behavior. Changes in sympatric carnivore and dominant scavenger populations provide opportunities to assess how carnivores affect one another. Cougars (Puma concolor) were the apex predator in the Great Basin of Nevada, USA, for over 80 years. Black bears (Ursus americanus) have recently recolonized the area and are known to heavily scavenge on cougar kills. To evaluate the impacts of sympatric, recolonizing bears on cougar foraging behavior in the Great Basin, we investigated kill sites of 31 cougars between 2009 and 2017 across a range of bear densities. We modeled the variation in feeding bout duration (number of nights spent feeding on a prey item) and the proportion of primary prey, mule deer (Odocoileus hemionus), in cougar diets using mixed-effects models. We found that feeding bout duration was driven primarily by the size of the prey item being consumed, local bear density, and the presence of dependent kittens. The proportion of mule deer in cougar diet across all study areas declined over time, was lower for male cougars, increased with the presence of dependent kittens, and increased with higher bear densities. In sites with feral horses (Equus ferus), a novel large prey, cougar consumption of feral horses increased over time. Our results suggest that higher bear densities over time may reduce cougar feeding bout durations and influence the prey selection trade-off for cougars when alternative, but more dangerous, large prey are available. Shifts in foraging behavior in multicarnivore systems can have cascading effects on prey selection. This study highlights the importance of measuring the impacts of sympatric apex predators and dominant scavengers on a shared resource base, providing a foundation for monitoring dynamic multipredator/scavenger systems

    Effects of speech passage length on accuracy of predicting metabolic thresholds using the talk test

    Get PDF
    The Talk Test (TT) is a simple technique for prescribing exercise training intensity, based on the ability to ‘speak comfortably’ after reciting a standard speech provoking stimulus. This study compares the length of the speech provoking stimulus on Power Output (PO) at standard TT speech comfort markers (Last Positive (LP), Equivocal (EQ), Negative (NEG)) in relation to objective markers of exercise intensity, the ventilatory (VT) and respiratory compensation (RCT) thresholds. Eighteen healthy subjects performed incremental (25W/2 min) exercise with concomitant gas exchange to measure VT and RCT. They also performed (random order) incremental exercise without gas exchange while repeating standard speech provoking stimuli of 31, 62 and 93 words to allow identification of the LP, EQ & NEG stages of the TT. The mean (+sd) PO at LP (139+38, 117+39 & 103+38 W), EQ (164+38, 142+38 & 128+33 W) & NEG (196+42, 189+43, & 174+39 W) stages of the TT were analyzed for 31, 62 & 93 word passages, in relation to the PO at VT (128+43 W) & RCT (175+39W). PO@EQ and PO@NEG stages of the TT, with the 93 word speech provoking stimulus were not significantly different than the PO@ VT and PO@RCT, respectively. The mean error for predicting PO@VT approximated zero with the longer (93 word) speech passage duration for EQ (0.1+37 W) and for predicting the PO@ RCT for NEG (0.1+29 W). The results suggest that a longer duration speech provoking passage optimizes the accuracy of the TT estimation of VT and RCT

    Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    Get PDF
    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ∼375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (εSr SW = +13.8 to +41.6, where εSr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters

    On the breaking of a plasma wave in a thermal plasma: I. The structure of the density singularity

    Full text link
    The structure of the singularity that is formed in a relativistically large amplitude plasma wave close to the wavebreaking limit is found by using a simple waterbag electron distribution function. The electron density distribution in the breaking wave has a typical "peakon" form. The maximum value of the electric field in a thermal breaking plasma is obtained and compared to the cold plasma limit. The results of computer simulations for different initial electron distribution functions are in agreement with the theoretical conclusions.Comment: 21 pages, 12 figure

    Antimicrobial Resistance of Escherichia coli O26, O103, O111, O128, and O145 from Animals and Humans

    Get PDF
    Susceptibilities to fourteen antimicrobial agents important in clinical medicine and agriculture were determined for 752 Escherichia coli isolates of serotypes O26, O103, O111, O128, and O145. Strains of these serotypes may cause urinary tract and enteric infections in humans and have been implicated in infections with Shiga toxin–producing E. coli (STEC). Approximately 50% of the 137 isolates from humans were resistant to ampicillin, sulfamethoxazole, cephalothin, tetracycline, or streptomycin, and approximately 25% were resistant to chloramphenicol, trimethoprim-sulfamethoxazole, or amoxicillin-clavulanic acid. Approximately 50% of the 534 isolates from food animals were resistant to sulfamethoxazole, tetracycline, or streptomycin. Of 195 isolates with STEC-related virulence genes, approximately 40% were resistant to sulfamethoxazole, tetracycline, or streptomycin. Findings from this study suggest antimicrobial resistance is widespread among E. coli O26, O103, O111, O128, and O145 inhabiting humans and food animals

    Preparation For Laser Wakefield Experiments Driven By The Texas Petawatt Laser System

    Get PDF
    Laboratories around the world are planning petawatt laser driven experiments. The Texas petawatt laser offers the ability to demonstrate laser wake field acceleration (LWFA) in a unique regime with pulse duration (similar to 160 fs) shorter than other petawatt scale systems currently in operation or under development. By focusing the 1.25 PW, 200 J, 160 Is pulses to peak intensity similar to 10(19) W/cm(2), multi-GeV electron bunches can be produced from a low density He gas jet. The rarefied plasma density (5x10(16) - 10(17) cm(-3)) required for near-resonant LWFA minimizes plasma lensing and offers long dephasing length for electron acceleration over distances (similar to 10 cm) exceeding the Rayleigh range. Because of the high power, the laser can be focused to a spot (r(0) similar to 100 microns) greater than the plasma wavelength (r(0) > lambda(p)), thus minimizing radial propagation effects. Together these properties enable the laser pulse to self-guide without the use of a preformed channel lending simplicity and stability to the overall acceleration process. Particle-in-cell (PIC) simulations show the laser experiences self-focusing which, because of ultrashort pulse duration, does not lead to a collapse of the wakefield and can generate over 3 GeV electron energy. The presented material will include details of initial measurements of the Texas petawatt laser system, simulations of laser wakefield acceleration for the given laser parameters and the experimental setup currently under construction.Physic

    Detecting radiation reaction at moderate laser intensities.

    Get PDF
    We propose a new method of detecting radiation reaction effects in the motion of particles subjected to laser pulses of moderate intensity and long duration. The effect becomes sizable for particles that gain almost no energy through the interaction with the laser pulse. Hence, there are regions of parameter space in which radiation reaction is actually the dominant influence on charged particle motion

    Ultrasound-mediated gastrointestinal drug delivery

    Get PDF
    available in PMC 2016 April 08There is a significant clinical need for rapid and efficient delivery of drugs directly to the site of diseased tissues for the treatment of gastrointestinal (GI) pathologies, in particular, Crohn’s and ulcerative colitis. However, complex therapeutic molecules cannot easily be delivered through the GI tract because of physiologic and structural barriers. We report the use of ultrasound as a modality for enhanced drug delivery to the GI tract, with an emphasis on rectal delivery. Ultrasound increased the absorption of model therapeutics inulin, hydrocortisone, and mesalamine two- to tenfold in ex vivo tissue, depending on location in the GI tract. In pigs, ultrasound induced transient cavitation with negligible heating, leading to an order of magnitude enhancement in the delivery of mesalamine, as well as successful systemic delivery of a macromolecule, insulin, with the expected hypoglycemic response. In a rodent model of chemically induced acute colitis, the addition of ultrasound to a daily mesalamine enema (compared to enema alone) resulted in superior clinical and histological scores of disease activity. In both animal models, ultrasound treatment was well tolerated and resulted in minimal tissue disruption, and in mice, there was no significant effect on histology, fecal score, or tissue inflammatory cytokine levels. The use of ultrasound to enhance GI drug delivery is safe in animals and could augment the efficacy of GI therapies and broaden the scope of agents that could be delivered locally and systemically through the GI tract for chronic conditions such as inflammatory bowel disease.United States. National Institutes of Health (EB-00351)United States. National Institutes of Health (EB-000244)United States. National Institutes of Health (CA014051)United States. National Institutes of Health (T32-DK007191-38-S1
    corecore