55 research outputs found

    SARS-CoV-2 variants and their relevant mutational profiles: update summer 2021

    Get PDF
    : Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic caused by it, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been undergoing a genetic diversification leading to the emergence of new variants. Nevertheless, a clear definition of the genetic signatures underlying the circulating variants is still missing. Here, we provide a comprehensive insight into mutational profiles characterizing each SARS-CoV-2 variant, focusing on spike mutations known to modulate viral infectivity and/or antigenicity. We focused on variants and on specific relevant mutations reported by GISAID, Nextstrain, Outbreak.info, Pango, and Stanford database websites that were associated with any clinical/diagnostic impact, according to published manuscripts. Furthermore, 1,223,338 full-length high-quality SARS-CoV-2 genome sequences were retrieved from GISAID and used to accurately define the specific mutational patterns in each variant. Finally, mutations were mapped on the three-dimensional structure of the SARS-CoV-2 spike protein to assess their localization in the different spike domains. Overall, this review sheds light and assists in defining the genetic signatures characterizing the currently circulating variants and their clinical relevance. IMPORTANCE Since the emergence of SARS-CoV-2, several recurrent mutations, particularly in the spike protein, arose during human-to-human transmission or spillover events between humans and animals, generating distinct worrisome variants of concern (VOCs) or of interest (VOIs), designated as such due to their clinical and diagnostic impacts. Characterizing these variants and their related mutations is important in tracking SAR-CoV-2 evolution and understanding the efficacy of vaccines and therapeutics based on monoclonal antibodies, convalescent-phase sera, and direct antivirals. Our study provides a comprehensive survey of the mutational profiles characterizing the important SARS-CoV-2 variants, focusing on spike mutations and highlighting other protein mutations

    Occupational HIV infection in a research laboratory with unknown mode of transmission : a case report

    Get PDF
    A lab-worker was infected with HIV-1 in a biosafety level-2 of containment, without any apparent breach. Through full-genome sequencing and phylogenetic analyses, we could identify the source of infection in a replication-competent clone, unknowingly contaminating a safe experiment. Mode of transmission remains unclear. Caution is warranted when handling HIV-derived constructs

    Incomplete APOBEC3G/F Neutralization by HIV-1 Vif Mutants Facilitates the Genetic Evolution from CCR5 to CXCR4 Usage

    Get PDF
    Incomplete APOBEC3G/F neutralization by a defective HIV-1Vif protein can promote genetic diversification by inducing G-to-A mutations in the HIV-1 genome. The HIV-1 Env V3 loop, critical for coreceptor usage, contains several putative APOBEC3G/F target sites. Here, we determined if APOBEC3G/F, in the presence of Vif-defective HIV-1 virus, can induce G-to-A mutations at V3 positions critical to modulation of CXCR4 usage. Peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) from 2 HIV-1-negative donors were infected with CCR5-using 81.A-Vif(WT) virus (i.e., with wildtype [WT] Vif protein), 81.A-Vif(E4SG), or 81.A-Vif(K22E) (known to incompletely/partially neutralize APOBEC3G/F). The rate of G-toA mutations was zero or extremely low in 81.A-Vif(WT) and 81.A-Vif(E45G) -infected PBMC from both donors. Conversely, G-to-A enrichment was detected in 81.A-Vif(K22E)-infected PBMC (prevalence ranging from 2.18% at 7 days postinfection [dpi] to 3.07% at 21 dpi in donor 1 and from 10.49% at 7 dpi to 8.69% at 21 dpi in donor 2). A similar scenario was found in MDM. G-to-A mutations occurred at 8 V3 positions, resulting in nonsynonymous amino acid substitutions. Of them, G24E and E25K strongly correlated with phenotypically/genotypically defined CXCR4-using viruses (P = 0.04 and 5.5e-7, respectively) and increased the CXCR4 N-terminal binding affinity for V3 (WT, -40.1 kcal/mol; G24E, -510 kcal/mol; E25K, -522 kcal/mol). The analysis of paired V3 and Vif DNA sequences from 84 HIV-1-infected patients showed that the presence of a Vif-defective virus correlated with CXCR4 usage in proviral DNA (P = 0.04). In conclusion, incomplete APOBEC3G/F neutralization by a single Vif amino acid substitution seeds a CXCR4-using proviral reservoir. This can have implications for the success of CCR5 antagonist-based therapy, as well as for the risk of disease progression

    Dynamics and phylogenetic relationships of HIV-1 transmitted drug resistance according to subtype in Italy over the years 2000-14

    Get PDF
    Background Transmitted drug-resistance (TDR) remains a critical aspect for the management of HIV-1-infected individuals. Thus, studying the dynamics of TDR is crucial to optimize HIV care. Methods In total, 4323 HIV-1 protease/reverse-transcriptase sequences from drug-naive individuals diagnosed in north and central Italy between 2000 and 2014 were analysed. TDR was evaluated over time. Maximum-likelihood and Bayesian phylogenetic trees with bootstrap and Bayesian-probability supports defined transmission clusters. Results Most individuals were males (80.2%) and Italian (72.1%), with a median (IQR) age of 37 (30-45) years. MSM accounted for 42.2% of cases, followed by heterosexuals (36.4%). Non-B subtype infections accounted for 30.8% of the overall population and increased over time (<2005-14: 19.5%-38.5%, P < 0.0001), particularly among Italians (<2005-14: 6.5%-28.8%, P < 0.0001). TDR prevalence was 8.8% and increased over time in non-B subtypes (<2005-14: 2%-7.1%, P = 0.018). Overall, 467 transmission clusters (involving 1207 individuals; 27.9%) were identified. The prevalence of individuals grouping in transmission clusters increased over time in both B (<2005-14: 12.9%-33.5%, P = 0.001) and non-B subtypes (<2005-14: 18.4%-41.9%, P = 0.006). TDR transmission clusters were 13.3% within the overall cluster observed and dramatically increased in recent years (<2005-14: 14.3%-35.5%, P = 0.005). This recent increase was mainly due to non-B subtype-infected individuals, who were also more frequently involved in large transmission clusters than those infected with a B subtype [median number of individuals in transmission clusters: 7 (IQR 6-19) versus 4 (3-4), P = 0.047]. Conclusions The epidemiology of HIV transmission changed greatly over time; the increasing number of transmission clusters (sometimes with drug resistance) shows that detection and proper treatment of the multi-transmitters is a major target for controlling HIV spread
    • …
    corecore