4 research outputs found

    Lie systems: theory, generalisations, and applications

    Full text link
    Lie systems form a class of systems of first-order ordinary differential equations whose general solutions can be described in terms of certain finite families of particular solutions and a set of constants, by means of a particular type of mapping: the so-called superposition rule. Apart from this fundamental property, Lie systems enjoy many other geometrical features and they appear in multiple branches of Mathematics and Physics, which strongly motivates their study. These facts, together with the authors' recent findings in the theory of Lie systems, led to the redaction of this essay, which aims to describe such new achievements within a self-contained guide to the whole theory of Lie systems, their generalisations, and applications.Comment: 161 pages, 2 figure

    Lagrangian-Hamiltonian unified formalism for field theory

    Get PDF
    The Rusk-Skinner formalism was developed in order to give a geometrical unified formalism for describing mechanical systems. It incorporates all the characteristics of Lagrangian and Hamiltonian descriptions of these systems (including dynamical equations and solutions, constraints, Legendre map, evolution operators, equivalence, etc.). In this work we extend this unified framework to first-order classical field theories, and show how this description comprises the main features of the Lagrangian and Hamiltonian formalisms, both for the regular and singular cases. This formulation is a first step toward further applications in optimal control theory for PDE's.Comment: LaTeX file, 23 pages. Minor changes have been made. References are update

    Tensor invariants and integration of differential equations

    No full text
    corecore