418 research outputs found
A dynamic measure of controllability and observability for the placement of actuators and sensors on large space structures
The degree of controllability of a large space structure is found by a four step procedure: (1) finding the minimum control energy for driving the system from a given initial state to the origin in the prescribed time; (2) finding the region of initial state which can be driven to the origin with constrained control energy and time using optimal control strategy; (3) scaling the axes so that a unit displacement in every direction is equally important to control; and (4) finding the linear measurement of the weighted "volume" of the ellipsoid in the equicontrol space. For observability, the error covariance must be reduced toward zero using measurements optimally, and the criterion must be standardized by the magnitude of tolerable errors. The results obtained using these methods are applied to the vibration modes of a free-free beam
Number and placement of control system components considering possible failures
A decision making methodology is presented which is intended to be useful in the early stages of system design, before a control system is designed in detail. The methodology accounts for the likelihood of failure among the sensors and actuators in a control system. A method to compute the degree of controllability and degree of observability of a system for a given set of actuators and sensors is also presented
Quantifying Resonant Structure in NGC 6946 from Two-dimensional Kinematics
We study the two-dimensional kinematics of the H-alpha-emitting gas in the
nearby barred Scd galaxy, NGC 6946, in order to determine the pattern speed of
the primary m=2 perturbation mode. The pattern speed is a crucial parameter for
constraining the internal dynamics, estimating the impact velocities of the
gravitational perturbation at the resonance radii, and to set up an
evolutionary scenario for NGC 6946. Our data allows us to derive the best
fitting kinematic position angle and the geometry of the underlying gaseous
disk, which we use to derive the pattern speed using the Tremaine-Weinberg
method. We find a main pattern speed Omega_p=22 km/s/kpc, but our data clearly
reveal the presence of an additional pattern speed Omega_p=47 km/s/kpc in a
zone within 1.25 kpc of the nucleus. Using the epicyclic approximation, we
deduce the location of the resonance radii and confirm that inside the outer
Inner Lindblad Resonance radius of the main oval, a primary bar has formed
rotating at more than twice the outer pattern speed. We further confirm that a
nuclear bar has formed inside the Inner Lindblad Resonance radius of the
primary bar, coinciding with the inner Inner Lindblad Resonance radius of the
large-scale m=2 mode oval.Comment: Accepted for publication in ApJ Letter
A Search for Ionized Gas in the Draco and Ursa Minor Dwarf Spheroidal Galaxies
The Wisconsin H Alpha Mapper has been used to set the first deep upper limits
on the intensity of diffuse H alpha emission from warm ionized gas in the Local
Group dwarf spheroidal galaxies (dSphs) Draco and Ursa Minor. Assuming a
velocity dispersion of 15 km/s for the ionized gas, we set limits for the H
alpha intensity of less or equal to 0.024 Rayleighs and less or equal to 0.021
Rayleighs for the Draco and Ursa Minor dSphs, respectively, averaged over our 1
degree circular beam. Adopting a simple model for the ionized interstellar
medium, these limits translate to upper bounds on the mass of ionized gas of
approximately less than 10% of the stellar mass, or approximately 10 times the
upper limits for the mass of neutral hydrogen. Note that the Draco and Ursa
Minor dSphs could contain substantial amounts of interstellar gas, equivalent
to all of the gas injected by dying stars since the end of their main star
forming episodes more than 8 Gyr in the past, without violating these limits on
the mass of ionized gas.Comment: 10 pages, 2 figures, AASTeX two-column format. Accepted for
publication in The Astrophysical Journa
HI Detection in two Dwarf S0 Galaxies in Nearby Groups: ESO384-016 and NGC 59
An \hi survey of 10 dE/dS0 galaxies in the nearby Sculptor and Centaurus A
groups was made using the Australia Telescope Compact Array (ATCA). The
observed galaxies have accurate distances derived by Jerjen et al (1998; 2000b)
using the surface brightness fluctuation technique. Their absolute magnitudes
are in the range . Only two of the ten galaxies were
detected at our detection limit ( \msol for the Centaurus
group and \msol for the Sculptor group), the two dS0
galaxies ESO384-016 in the Centaurus A Group and NGC 59 in the Sculptor Group,
with \hi masses of \msol and \msol respectively. Those two detections were confirmed using the Green
Bank Telescope. These small \hi reservoirs could fuel future generations of low
level star formation and could explain the bluer colors seen at the center of
the detected galaxies. Similarly to what is seen with the Virgo dEs, the two
objects with \hi appear to be on the outskirt of the groups.Comment: 25 pages (11 figures), accepted by A
The retarding ion mass spectrometer on dynamics Explorer-A
An instrument designed to measure the details of the thermal plasma distribution combines the ion temperature-determining capability of the retarding potential analyzer with the compositional capabilities of the mass spectrometer and adds multiple sensor heads to sample all directions relative to the spacecraft ram directions. The retarding ion mass spectrometer, its operational modes and calibration are described as well as the data reduction plan, and the anticipated results
Towards a Full Census of the Obscure(d) Vela Supercluster using MeerKAT
Recent spectroscopic observations of a few thousand partially obscured
galaxies in the Vela constellation revealed a massive overdensity on
supercluster scales straddling the Galactic Equator (l 272.5deg) at km/s. It remained unrecognised because it is located just beyond the
boundaries and volumes of systematic whole-sky redshift and peculiar velocity
surveys - and is obscured by the Milky Way. The structure lies close to the
apex where residual bulkflows suggest considerable mass excess. The uncovered
Vela Supercluster (VSCL) conforms of a confluence of merging walls, but its
core remains uncharted. At the thickest foreground dust column densities (|b| <
6 deg) galaxies are not visible and optical spectroscopy is not effective. This
precludes a reliable estimate of the mass of VSCL, hence its effect on the
cosmic flow field and the peculiar velocity of the Local Group. Only systematic
HI-surveys can bridge that gap. We have run simulations and will present
early-science observing scenarios with MeerKAT 32 (M32) to complete the census
of this dynamically and cosmologically relevant supercluster. M32 has been put
forward because this pilot project will also serve as precursor project for HI
MeerKAT Large Survey Projects, like Fornax and Laduma. Our calculations have
shown that a survey area of the fully obscured part of the supercluster, where
the two walls cross and the potential core of the supercluster resides, can be
achieved on reasonable time-scales (200 hrs) with M32.Comment: 10 pages, 3 figures, accepted for publication, Proceedings of
Science, workshop on "MeerKAT Science: On the Pathway to the SKA", held in
Stellenbosch 25-27 May 201
Extended HI Rotation Curve and Mass Distribution of M31
New HI observations of Messier 31 (M31) obtained with the Effelsberg and
Green Bank 100-m telescopes make it possible to measure the rotation curve of
that galaxy out to ~35 kpc. Between 20 and 35 kpc, the rotation curve is nearly
flat at a velocity of ~226 km/s. A model of the mass distribution shows that at
the last observed velocity point, the minimum dark-to-luminous mass ratio is
\~0.5 for a total mass of 3.4 10^11 Msol at R < 35 kpc. This can be compared to
the estimated MW mass of 4.9 10^11 Msol for R < 50 kpc.Comment: 4 pages, 2 figures, accepted for publication in ApJ Letter
Gas Rich Dwarf Spheroidals
We present evidence that nearly half of the dwarf spheroidal galaxies (dSph
and dSph/dIrr) in the Local Group are associated with large reservoirs of
atomic gas, in some cases larger than the stellar mass. The gas is sometimes
found at large distance (~10 kpc) from the center of a galaxy and is not
necessarily centered on it. Similarly large quantities of ionized gas could be
hidden in these systems as well. The properties of some of the gas reservoirs
are similar to the median properties of the High-Velocity Clouds (HVCs); two of
the HI reservoirs are catalogued HVCs. The association of the HI with the dwarf
spheroidals might thus provide a link between the HVCs and stars. We show that
the HI content of the Local Group dSphs and dIrrs exhibits a sharp decline if
the galaxy is within 250 kpc of either the Milky Way or M31. This can be
explained if both galaxies have a sufficiently massive x-ray emitting halo that
produces ram-pressure stripping if a dwarf ventures too close to either giant
spiral. We also investigate tidal stripping of the dwarf galaxies and find that
although it may play a role, it cannot explain the apparent total absence of
neutral gas in most dSph galaxies at distances less than 250 kpc. For the
derived mean density of the hot gas, n_0 = 2.5e-5 cm^-2, ram-pressure stripping
is found to be more than an order of magnitude more effective in removing the
gas from the dSph galaxies. The hot halo, with an inferred mass of 1e10 solar
masses, may represent a reservoir of ~1000 destroyed dwarf systems, either HVCs
or true dwarf galaxies similar to those we observe now.Comment: AASTex preprint style, 27 pages including 12 figures. Submitted to
ApJ. See also http://astro.berkeley.edu/~robisha
- …