166 research outputs found
A Technique to Derive Improved Proper Motions for Kepler Objects of Interest
We outline an approach yielding proper motions with higher precision than
exists in present catalogs for a sample of stars in the Kepler field. To
increase proper motion precision we combine first moment centroids of Kepler
pixel data from a single Season with existing catalog positions and proper
motions. We use this astrometry to produce improved reduced proper motion
diagrams, analogous to a Hertzsprung-Russell diagram, for stars identified as
Kepler Objects of Interest. The more precise the relative proper motions, the
better the discrimination between stellar luminosity classes. With UCAC4 and
PPMXL epoch 2000 positions (and proper motions from those catalogs as
quasi-bayesian priors) astrometry for a single test Channel (21) and Season (0)
spanning two years yields proper motions with an average per-coordinate proper
motion error of 1.0 millisecond of arc per year, over a factor of three better
than existing catalogs. We apply a mapping between a reduced proper motion
diagram and an HR diagram, both constructed using HST parallaxes and proper
motions, to estimate Kepler Object of Interest K-band absolute magnitudes. The
techniques discussed apply to any future small-field astrometry as well as the
rest of the Kepler field.Comment: Accepted to The Astronomical Journal 15 August 201
Absence of a metallicity effect for ultra-short-period planets
Ultra-short-period (USP) planets are a newly recognized class of planets with
periods shorter than one day and radii smaller than about 2 Earth radii. It has
been proposed that USP planets are the solid cores of hot Jupiters that lost
their gaseous envelopes due to photo-evaporation or Roche lobe overflow. We
test this hypothesis by asking whether USP planets are associated with
metal-rich stars, as has long been observed for hot Jupiters. We find the
metallicity distributions of USP-planet and hot-Jupiter hosts to be
significantly different (), based on Keck spectroscopy of
Kepler stars. Evidently, the sample of USP planets is not dominated by the
evaporated cores of hot Jupiters. The metallicity distribution of stars with
USP planets is indistinguishable from that of stars with short-period planets
with sizes between 2--4~. Thus it remains possible that the USP
planets are the solid cores of formerly gaseous planets smaller than Neptune.Comment: AJ, in pres
The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets
The size of a planet is an observable property directly connected to the
physics of its formation and evolution. We used precise radius measurements
from the California-Kepler Survey (CKS) to study the size distribution of 2025
planets in fine detail. We detect a factor of 2 deficit
in the occurrence rate distribution at 1.5-2.0 R. This gap splits
the population of close-in ( < 100 d) small planets into two size regimes:
R < 1.5 R and R = 2.0-3.0 R, with few planets in
between. Planets in these two regimes have nearly the same intrinsic frequency
based on occurrence measurements that account for planet detection
efficiencies. The paucity of planets between 1.5 and 2.0 R supports
the emerging picture that close-in planets smaller than Neptune are composed of
rocky cores measuring 1.5 R or smaller with varying amounts of
low-density gas that determine their total sizes.Comment: Paper III in the California-Kepler Survey series, accepted to the
Astronomical Journa
The California-Kepler Survey. II. Precise Physical Properties of 2025 Kepler Planets and Their Host Stars
We present stellar and planetary properties for 1305 Kepler Objects of
Interest (KOIs) hosting 2025 planet candidates observed as part of the
California-Kepler Survey. We combine spectroscopic constraints, presented in
Paper I, with stellar interior modeling to estimate stellar masses, radii, and
ages. Stellar radii are typically constrained to 11%, compared to 40% when only
photometric constraints are used. Stellar masses are constrained to 4%, and
ages are constrained to 30%. We verify the integrity of the stellar parameters
through comparisons with asteroseismic studies and Gaia parallaxes. We also
recompute planetary radii for 2025 planet candidates. Because knowledge of
planetary radii is often limited by uncertainties in stellar size, we improve
the uncertainties in planet radii from typically 42% to 12%. We also leverage
improved knowledge of stellar effective temperature to recompute incident
stellar fluxes for the planets, now precise to 21%, compared to a factor of two
when derived from photometry.Comment: 13 pages, 4 figures, 4 tables, accepted for publication in AJ; full
versions of tables 3 and 4 are include
The California-Kepler Survey V. Peas in a Pod: Planets in a Kepler Multi-planet System are Similar in Size and Regularly Spaced
We have established precise planet radii, semimajor axes, incident stellar
fluxes, and stellar masses for 909 planets in 355 multi-planet systems
discovered by Kepler. In this sample, we find that planets within a single
multi-planet system have correlated sizes: each planet is more likely to be the
size of its neighbor than a size drawn at random from the distribution of
observed planet sizes. In systems with three or more planets, the planets tend
to have a regular spacing: the orbital period ratios of adjacent pairs of
planets are correlated. Furthermore, the orbital period ratios are smaller in
systems with smaller planets, suggesting that the patterns in planet sizes and
spacing are linked through formation and/or subsequent orbital dynamics. Yet,
we find that essentially no planets have orbital period ratios smaller than
, regardless of planet size. Using empirical mass-radius relationships, we
estimate the mutual Hill separations of planet pairs. We find that of
the planet pairs are at least 10 mutual Hill radii apart, and that a spacing of
mutual Hill radii is most common. We also find that when comparing
planet sizes, the outer planet is larger in of cases, and the
typical ratio of the outer to inner planet size is positively correlated with
the temperature difference between the planets. This could be the result of
photo-evaporation.Comment: Published in The Astronomical Journal. 15 pages, 17 figure
The California-Kepler Survey. I. High Resolution Spectroscopy of 1305 Stars Hosting Kepler Transiting Planets
The California-Kepler Survey (CKS) is an observational program to improve our
knowledge of the properties of stars found to host transiting planets by NASA's
Kepler Mission. The improvement stems from new high-resolution optical spectra
obtained using HIRES at the W. M. Keck Observatory. The CKS stellar sample
comprises 1305 stars classified as Kepler Objects of Interest, hosting a total
of 2075 transiting planets. The primary sample is magnitude-limited (Kp < 14.2)
and contains 960 stars with 1385 planets. The sample was extended to include
some fainter stars that host multiple planets, ultra short period planets, or
habitable zone planets. The spectroscopic parameters were determined with two
different codes, one based on template matching and the other on direct
spectral synthesis using radiative transfer. We demonstrate a precision of 60 K
in effective temperature, 0.10 dex in surface gravity, 0.04 dex in [Fe/H], and
1.0 km/s in projected rotational velocity. In this paper we describe the CKS
project and present a uniform catalog of spectroscopic parameters. Subsequent
papers in this series present catalogs of derived stellar properties such as
mass, radius and age; revised planet properties; and statistical explorations
of the ensemble. CKS is the largest survey to determine the properties of
Kepler stars using a uniform set of high-resolution, high signal-to-noise ratio
spectra. The HIRES spectra are available to the community for independent
analyses.Comment: 20 pages, 19 figures, accepted for publication in AJ; a full version
of Table 5 is included as tab_cks.csv and tab_cks.te
- …
