22 research outputs found

    Method for Identifying Probable Archaeological Sites from Remotely Sensed Data

    Get PDF
    Archaeological sites are being compromised or destroyed at a catastrophic rate in most regions of the world. The best solution to this problem is for archaeologists to find and study these sites before they are compromised or destroyed. One way to facilitate the necessary rapid, wide area surveys needed to find these archaeological sites is through the generation of maps of probable archaeological sites from remotely sensed data. We describe an approach for identifying probable locations of archaeological sites over a wide area based on detecting subtle anomalies in vegetative cover through a statistically based analysis of remotely sensed data from multiple sources. We further developed this approach under a recent NASA ROSES Space Archaeology Program project. Under this project we refined and elaborated this statistical analysis to compensate for potential slight miss-registrations between the remote sensing data sources and the archaeological site location data. We also explored data quantization approaches (required by the statistical analysis approach), and we identified a superior data quantization approached based on a unique image segmentation approach. In our presentation we will summarize our refined approach and demonstrate the effectiveness of the overall approach with test data from Santa Catalina Island off the southern California coast. Finally, we discuss our future plans for further improving our approach

    Posterior Probability Modeling and Image Classification for Archaeological Site Prospection: Building a Survey Efficacy Model for Identifying Neolithic Felsite Workshops in the Shetland Islands

    Get PDF
    The application of custom classification techniques and posterior probability modeling (PPM) using Worldview-2 multispectral imagery to archaeological field survey is presented in this paper. Research is focused on the identification of Neolithic felsite stone tool workshops in the North Mavine region of the Shetland Islands in Northern Scotland. Sample data from known workshops surveyed using differential GPS are used alongside known non-sites to train a linear discriminant analysis (LDA) classifier based on a combination of datasets including Worldview-2 bands, band difference ratios (BDR) and topographical derivatives. Principal components analysis is further used to test and reduce dimensionality caused by redundant datasets. Probability models were generated by LDA using principal components and tested with sites identified through geological field survey. Testing shows the prospective ability of this technique and significance between 0.05 and 0.01, and gain statistics between 0.90 and 0.94, higher than those obtained using maximum likelihood and random forest classifiers. Results suggest that this approach is best suited to relatively homogenous site types, and performs better with correlated data sources. Finally, by combining posterior probability models and least-cost analysis, a survey least-cost efficacy model is generated showing the utility of such approaches to archaeological field survey

    Refinement of a Method for Identifying Probable Archaeological Sites from Remotely Sensed Data

    Get PDF
    To facilitate locating archaeological sites before they are compromised or destroyed, we are developing approaches for generating maps of probable archaeological sites, through detecting subtle anomalies in vegetative cover, soil chemistry, and soil moisture by analyzing remotely sensed data from multiple sources. We previously reported some success in this effort with a statistical analysis of slope, radar, and Ikonos data (including tasseled cap and NDVI transforms) with Student's t-test. We report here on new developments in our work, performing an analysis of 8-band multispectral Worldview-2 data. The Worldview-2 analysis begins by computing medians and median absolute deviations for the pixels in various annuli around each site of interest on the 28 band difference ratios. We then use principle components analysis followed by linear discriminant analysis to train a classifier which assigns a posterior probability that a location is an archaeological site. We tested the procedure using leave-one-out cross validation with a second leave-one-out step to choose parameters on a 9,859x23,000 subset of the WorldView-2 data over the western portion of Ft. Irwin, CA, USA. We used 100 known non-sites and trained one classifier for lithic sites (n=33) and one classifier for habitation sites (n=16). We then analyzed convex combinations of scores from the Archaeological Predictive Model (APM) and our scores. We found that that the combined scores had a higher area under the ROC curve than either individual method, indicating that including WorldView-2 data in analysis improved the predictive power of the provided APM

    Neighborhood Homogeneous Labelings of Graphs

    Get PDF
    Given a labeling of the vertices and edges of a graph, we define a type of homogeneity that requires that the neighborhood of every vertex contains the same number of each of the labels. This homogeneity constraint is a generalization of regularity – all such graphs are regular. We consider a specific condition in which both the edge and vertex label sets have two elements and every neighborhood contains two of each label. We show that vertex homogeneity implies edge homogeneity (so long as the number of edges in any neighborhood is four), and give two theorems describing how to build new homogeneous graphs (or multigraphs) from others. Keywords: vertex labeling; edge labeling; homogenous graph; regular graph 1

    Conserved genes and pathways in primary human fibroblast strains undergoing replicative and radiation induced senescence

    Get PDF
    Additional file 3: Figure S3. Regulation of genes of Arrhythmogenic right ventricular cardiomyopathy pathway during senescence induction in HFF strains Genes of the “Arrhythmogenic right ventricular cardiomyopathy” pathway which are significantly up- (green) and down- (red) regulated (log2 fold change >1) during irradiation induced senescence (120 h after 20 Gy irradiation) in HFF strains. Orange color signifies genes which are commonly up-regulated during both, irradiation induced and replicative senescence
    corecore