400 research outputs found

    Novel monomers with N-methyl-D-glucamine segments and their application in structured porous materials for arsenic capture

    Get PDF
    The N-methyl-D-glucamine moieties exhibit high ability and selectivity toward arsenate ions in water by a complexation mechanism that involves their hydroxyl groups. In this work, the syntheses of two monomers containing N-methyl-D-glucamine, namely 4-vinylbenzyl-N-methyl-D-glucamine (VbNMDG), and N-methyl-D-glucamine methacrylamide (MNMDG) were studied. Different synthetic routes were considered in order to obtain liquid monomers able to polymerize and selectively capture arsenic. Furthermore, the incorporation of protective groups like trimethylsilyl moieties in the molecular structure was assessed to prevent transfer reactions during further polymerization. After polymerization, hydroxyl groups were deprotected using hydrofluoric acid. Following this methodology, structured microporous polymeric films based on colloidal crystal templates were prepared. NMR and FTIR techniques were used to follow the reactions and to determine the chemical structure of the obtained products. The morphology of materials was characterized by SEM. The performances of the developed polymeric films to selectively capture arsenic were determined. Films showed an improved and reproducible sensitivity to arsenic detection exhibiting high values of arsenic capturing capability (around 90%)

    Power-aware allocation of MBSFN subframes using Discontinuous Cell Transmission in LTE systems

    Get PDF
    In LTE and its evolutions, energy efficiency is a critical aspect, also in view of the dramatic traffic growth foreseen for the next years. Cell Discontinuous Transmission (DTX) techniques can be important tools to achieve the needed efficiency in the networks, and one possibility is to implement the DTX by switching off the eNB at some subframes (MBSFN subframes) and not in others (where reference signals are also transmitted). Switching schedules in LTE are made for larger periods (e.g., 40/80ms or even more). We present an algorithm that i) estimates how many resources will be needed in a period, and ii) shows how many resource blocks to activate in each subframe so as to maximize the power efficiency. The problem is formulated as an integer linear problem and solved heuristically. Numerical results show that the power saving is significant, close to the theoretical minimum at low loads, and it comes with a tolerable extra dela

    Practical large-scale coordinated scheduling in LTE-Advanced networks

    Get PDF
    In LTE-Advanced, the same spectrum can be re-used in neighboring cells, hence coordinated scheduling is employed to improve the overall network performance (cell throughput, fairness, and energy efficiency) by reducing inter-cell interference. In this paper, we advocate that large-scale coordination can be obtained through a layered solution: a cluster of few (i.e., three) cells is coordinated at the first level, and clusters of coordinated cells are then coordinated at a larger scale (e.g., tens of cells). We model both small-scale coordination and large-scale coordination as optimization problems, show that solving them at optimality is prohibitive, and propose two efficient heuristics that achieve good results, and yet are simple enough to be run at every Transmission Time Interval (TTI). Detailed packet-level simulations show that our layered approach outperforms the existing ones, both static and dynamic

    Improving network performance via optimization-based centralized coordination of LTE-A cells

    Get PDF
    This paper shows how to improve the overall network performance (cell throughput, fairness, and energy efficiency) via centralized coordination of LTE-A cells. We first present optimization models for small-scale coordination (i.e., three cells). Then, we show that extending the same solution to a higher number of cells is generally unfeasible, due to both an unfeasible amount of reporting on the UE side, and too high computational requirements. To overcome this limitation we then propose a layered solution which i) relies on small-scale coordination at the first level (e.g., three cells at the same site), and ii) coordinates groups of coordinated cells at a higher scale (i.e., tens of cells), using optimization models, reaping the benefits of a centralized architecture. We show through packet-level simulations that our scheme brings significant benefits, in terms of fairness, throughput, and energy efficiency

    Resource allocation for network-controlled device-to-device communications in LTE-Advanced

    Get PDF
    Network-controlled device-to-device (D2D) communication allows cellular users to communicate directly, i.e., without passing through the eNodeB, while the latter retains control over resource allocation. This allows the same time–frequency resources to be allocated to spatially separated D2D flows simultaneously, thus increasing the cell throughput. This paper presents a framework for: (1) selecting which communications should use the D2D mode, and when, and (2) allocating resources to D2D and non-D2D users, exploiting reuse for the former. We show that the two problems, although apparently similar, should be kept separate and solved at different timescales in order to avoid problems, such as excessive packet loss. We model both as optimization problems, and propose a heuristic solution to the second, which must be solved at millisecond timescales. Simulation results show that our framework is practically viable, it avoids the problem of packet losses, increases throughput and reduces delays

    Polylactic acid-lauryl functionalized nanocellulose nanocomposites: Microstructural, thermo-mechanical and gas transport properties

    Get PDF
    Thermo-mechanical and gas transport properties of polylactic acid (PLA) matrix containing various amounts (from 1 to 20 wt%) of nanocellulose esterified with lauryl chains (LNC) were investigated on solvent cast film of about 50 micron. Scanning electron microscopy indicated that, up to a filler content of 6.5 wt%, LNC was well dispersed or formed small, sub-micrometric clusters. At higher filler contents, oval aggregates in the micrometric range were detected. The addition of LNC did not change the matrix glass transition temperature and melting temperature. Concurrently, as LNC content increased, both elastic and storage moduli at room temperature exhibited a sharp decrease up to 5 wt% of filler, and a lower reduction for LCN concentration of 10\u201320 wt.%. Nanocomposites with 3 and 5 wt% of LNC showed the highest strain at break and a large amount of plastic deformation due to a strong interfacial adhesion between the PLA and filler particles. For higher LNC fractions the presence of aggregates weakened the nanocomposite leading to lower values of maximum stress and strain at break. With the addition of LNC particles, gas barrier properties of the PLA film versus deuterium, nitrogen and carbon dioxide were improved up to a critical LNC concentration of 6.5 wt%, where the gas permeability of the nanocomposite resulted to be 70% lower than that of the PLA matrix. At higher filler contents, large LNC aggregates increased the gas permeability of the nanocomposites

    Crystallization kinetics as a sensitive tool to detect degradation in poly(lactide)/poly(ε-caprolactone)/ PCL-co-PC copolymers blends

    Get PDF
    Poly(lactide)/poly(ε-caprolactone) blends (PLA/PCL) with composition 80/20 (w/w%) are immiscible but biodegradable and therefore often studied in the literature. We have prepared 80/20 PLA/PCL blends with and without poly(ε-caprolactone)-co-poly(carbonate) copolymers (block and random). The blends were prepared both by melt extrusion and by solution blending. The concentration of PCL-co-PC copolymers added to the blends was 2 wt%. Compression molded sheets and solvent cast films were evaluated by GPC (Gel Permeation Chromatography), TGA (Thermogravimetric Analysis), SEM (Scanning Electron Microscopy), PLOM (Polarized Light Optical Microscopy) and DSC (Differential Scanning Calorimetry). Copolymer addition causes a reduction of molecular weight in melt mixed blends. In particular, the random copolymer (PCL-ran-PC) causes the highest molecular weight reduction, since it has lower thermal stability, as shown by TGA. PLOM experiments show that these degraded PLA chains in melt-mixed blends can nucleate and grow faster than similar but undegraded PLA chains in solution-mixed blends. As a result, the PLA phase within melt mixed blends containing PCL-co-PC copolymers shows a higher tendency to crystallize during both isothermal and non-isothermal DSC experiments. Upon molecular weight reduction in melt mixed blends containing copolymers, PLA chains have a higher mobility resulting in faster diffusion towards the growing crystal front. Our results show crystallization kinetic measurements, performed by PLOM or DSC, are useful tools to qualitatively detect molecular weight changes produced by degradation of PLA chains, when the molecular weight reduction is not large enough to decrease Tm values

    Towards a new protocol for field measurements of greenhouse gases from wastewater treatment plant

    Get PDF
    Emissions into the atmosphere of greenhouse gases (GHGs), i.e., carbon dioxide, methane and nitrous oxide from wastewater treatment plants are of increasing concern in the water industry. In order to produce useful and comparable information for monitoring, assessing and reporting GHG emissions from wastewater treatment plants, there is a crescent need for a general accepted methodology. This paper aims at proposing the first protocol for monitoring and accounting GHG emissions from wastewater treatment plants taking into account both direct and internal indirect emissions focusing on sections known to be major responsible of GHG emissions i.e. oxidation tanks and sludge digestion. The main novelties of the proposed protocol are: (i) direct and indirect internal emissions ascribed to aeration devices which are related each other, (ii) the monitoring of biogas composition in case of anaerobic digestion which affects GHG emissions offset due to biogas valorization systems and (iii) monitoring of non-aerated tanks
    • …
    corecore