14,764 research outputs found

    Schwinger-Dyson equations and the quark-antiquark static potential

    Full text link
    In lattice QCD, a confining potential for a static quark-antiquark pair can be computed with the Wilson loop technique. This potential, dominated by a linear potential at moderate distances, is consistent with the confinement with a flux tube, an extended and scalar system also directly observable in lattice QCD. Quantized flux tubes have also been observed in another class of confinement, the magnetic confinement in type II superconductors. On the other hand the solution of Schwinger Dyson Equations, say with the Landau gauge fixing and the truncation of the series of Feynman diagrams, already at the rainbow level for the self energy and at the ladder level for the Bethe Salpeter equation, provides a signal of a possible inverse quartic potential in momentum space derived from one gluon and one ghost exchange, consistent with confinement. Here we address the successes, difficulties and open problems of the matching of these two different perspectives of confinement, the Schwinger-Dyson perspective versus the flux tube perspective.Comment: 12 pages, 18 figures; talk presented at QCD-TNT, Trento, 7-11 sep 200

    Landau Gauge Fixing on GPUs

    Full text link
    In this paper we present and explore the performance of Landau gauge fixing in GPUs using CUDA. We consider the steepest descent algorithm with Fourier acceleration, and compare the GPU performance with a parallel CPU implementation. Using 32432^4 lattice volumes, we find that the computational power of a single Tesla C2070 GPU is equivalent to approximately 256 CPU cores.Comment: 10 pages, 3 figures and 3 table

    Landau Gauge Fixing on GPUs and String Tension

    Full text link
    We explore the performance of CUDA in performing Landau gauge fixing in Lattice QCD, using the steepest descent method with Fourier acceleration. The code performance was tested in a Tesla C2070, Fermi architecture. We also present a study of the string tension at finite temperature in the confined phase. The string tension is extracted from the color averaged free energy and from the color singlet using Landau gauge fixing.Comment: 7 pages, 4 figures, 1 table. Contribution to the International Meeting "Excited QCD", Peniche, Portugal, 06 - 12 May 201

    Landau gauge fixing on the lattice using GPU's

    Full text link
    In this work, we consider the GPU implementation of the steepest descent method with Fourier acceleration for Laudau gauge fixing, using CUDA. The performance of the code in a Tesla C2070 GPU is compared with a parallel CPU implementation.Comment: 3 pages, 1 figure, Proceedings of the Xth Quark Confinement and the Hadron Spectrum, 8-12 October 2012, TUM Campus Garching, Munich, German

    Gluons at finite temperature

    Get PDF
    The gluon propagator is investigated at finite temperature via lattice simulations. In particular, we discuss its interpretation as a massive-type bosonic propagator. Moreover, we compute the corresponding spectral density and study the violation of spectral positivity. Finally, we explore the dependence of the gluon propagator on the phase of the Polyakov loop
    corecore