8,809 research outputs found

    Elastic turbulence in shear banding wormlike micelles

    Full text link
    We study the dynamics of the Taylor-Couette flow of shear banding wormlike micelles. We focus on the high shear rate branch of the flow curve and show that for sufficiently high Weissenberg numbers, this branch becomes unstable. This instability is strongly sub-critical and is associated with a shear stress jump. We find that this increase of the flow resistance is related to the nucleation of turbulence. The flow pattern shows similarities with the elastic turbulence, so far only observed for polymer solutions. The unstable character of this branch led us to propose a scenario that could account for the recent observations of Taylor-like vortices during the shear banding flow of wormlike micelles

    Instanton Corrected Non-Supersymmetric Attractors

    Full text link
    We discuss non-supersymmetric attractors with an instanton correction in Type IIA string theory compactified on a Calabi-Yau three-fold at large volume. For a stable non-supersymmetric black hole, the attractor point must minimize the effective black hole potential. We study the supersymmetric as well as non-supersymmetric attractors for the D0-D4 system with instanton corrections. We show that in simple models, like the STU model, the flat directions of the mass matrix can be lifted by a suitable choice of the instanton parameters.Comment: Minor modifications, Corrected typos, 38 pages, 1 figur

    Quasinormal modes of d-dimensional spherical black holes with a near extreme cosmological constant

    Full text link
    We derive an expression for the quasinormal modes of scalar perturbations in near extreme d-dimensional Schwarzschild-de Sitter and Reissner-Nordstrom-de Sitter black holes. We show that, in the near extreme limit, the dynamics of the scalar field is characterized by a Poschl-Teller effective potential. The results are qualitatively independent of the spacetime dimension and field mass.Comment: 5 pages, REVTeX4, version to be published in Physical Review

    BPS black holes, the Hesse potential, and the topological string

    Full text link
    The Hesse potential is constructed for a class of four-dimensional N=2 supersymmetric effective actions with S- and T-duality by performing the relevant Legendre transform by iteration. It is a function of fields that transform under duality according to an arithmetic subgroup of the classical dualities reflecting the monodromies of the underlying string compactification. These transformations are not subject to corrections, unlike the transformations of the fields that appear in the effective action which are affected by the presence of higher-derivative couplings. The class of actions that are considered includes those of the FHSV and the STU model. We also consider heterotic N=4 supersymmetric compactifications. The Hesse potential, which is equal to the free energy function for BPS black holes, is manifestly duality invariant. Generically it can be expanded in terms of powers of the modulus that represents the inverse topological string coupling constant, gsg_s, and its complex conjugate. The terms depending holomorphically on gsg_s are expected to correspond to the topological string partition function and this expectation is explicitly verified in two cases. Terms proportional to mixed powers of gsg_s and gˉs\bar g_s are in principle present.Comment: 28 pages, LaTeX, added comment

    Hartle-Hawking Wave-Function for Flux Compactifications

    Get PDF
    We argue that the topological string partition function, which has been known to correspond to a wave-function, can be interpreted as an exact ``wave-function of the universe'' in the mini-superspace sector of physical superstring theory. This realizes the idea of Hartle and Hawking in the context of string theory, including all loop quantum corrections. The mini-superspace approximation is justified as an exact description of BPS quantities. Moreover this proposal leads to a conceptual explanation of the recent observation that the black hole entropy is the square of the topological string wave-function. This wave-function can be interpreted in the context of flux compactification of all spatial dimensions as providing a physical probability distribution on the moduli space of string compactification. Euclidean time is realized holographically in this setup.Comment: 37 pages, 2 figure

    Field propagation in de Sitter black holes

    Get PDF
    We present an exhaustive analysis of scalar, electromagnetic and gravitational perturbations in the background of Schwarzchild-de Sitter and Reissner-Nordstrom-de Sitter spacetimes. The field propagation is considered by means of a semi-analytical (WKB) approach and two numerical schemes: the characteristic and general initial value integrations. The results are compared near the extreme cosmological constant regime, where analytical results are presented. A unifying picture is established for the dynamics of different spin fields.Comment: 15 pages, 16 figures, published versio

    Quasi-normal modes of Schwarzschild-de Sitter black holes

    Full text link
    The low-laying frequencies of characteristic quasi-normal modes (QNM) of Schwarzschild-de Sitter (SdS) black holes have been calculated for fields of different spin using the 6th-order WKB approximation and the approximation by the P\"{o}shl-Teller potential. The well-known asymptotic formula for large ll is generalized here on a case of the Schwarzchild-de Sitter black hole. In the limit of the near extreme Λ\Lambda term the results given by both methods are in a very good agreement, and in this limit fields of different spin decay with the same rate.Comment: 9 pages, 1 ancillary Mathematica(R) noteboo

    Gravitational quasinormal radiation of higher-dimensional black holes

    Full text link
    We find the gravitational resonance (quasinormal) modes of the higher dimensional Schwarzschild and Reissner-Nordstrem black holes. The effect on the quasinormal behavior due to the presence of the λ\lambda term is investigated. The QN spectrum is totally different for different signs of λ\lambda. In more than four dimensions there excited three types of gravitational modes: scalar, vector, and tensor. They produce three different quasinormal spectra, thus the isospectrality between scalar and vector perturbations, which takes place for D=4 Schwarzschild and Schwarzschild-de-Sitter black holes, is broken in higher dimensions. That is the scalar-type gravitational perturbations, connected with deformations of the black hole horizon, which damp most slowly and therefore dominate during late time of the black hole ringing.Comment: 13 pages, 2 figures, several references are adde
    • …
    corecore